|
|
(1 промежуточная версия не показана) | Строка 5: |
Строка 5: |
| <metakeywords>Физика, 10 класс, Силовые линии, электрического поля, Напряженность поля, заряженного шара</metakeywords> | | <metakeywords>Физика, 10 класс, Силовые линии, электрического поля, Напряженность поля, заряженного шара</metakeywords> |
| | | |
- | Электрическое поле не действует на органы чувств. Его мы не видим.<br> Однако мы можем получить некоторое представление о распределении поля, если нарисуем векторы напряженности поля в нескольких точках пространства (''рис.14.9'', слева). Картина будет более наглядной, если нарисовать непрерывные линии, касательные к которым в каждой точке, через которую они проходят, совпадают по направлению с векторами напряженности. Эти линии называют '''силовыми линиями электрического поля или линиями напряженности''' (''рис.14.9'', справа).<br>[[Image:a14.9.jpg|center]] Направление силовых линий позволяет определить направление вектора напряженности в различных точках поля, а густота (число линий на единицу площади) силовых линий показывает, где напряженность поля больше. Так, на рисунках 14.10-14.13 густота силовых линий в точках ''А ''больше, чем в точках ''В''. Очевидно, [[Image:a92-2.jpg]].<br> Не следует думать, что линии напряженности существуют в действительности вроде растянутых упругих нитей или шнуров, как предполагал сам Фарадей. Линии напряженности помогают лишь наглядно представить распределение поля в пространстве. Они не более реальны, чем меридианы и параллели на земном шаре.<br> Однако силовые линии можно сделать видимыми. Если продолговатые кристаллики изолятора (например, хинина) хорошо перемешать в вязкой жидкости (например, в касторовом масле) и поместить туда заряженные тела, то вблизи этих тел кристаллики выстроятся в цепочки вдоль линий напряженности.<br> На рисунках приведены примеры линий напряженности: положительно заряженного шарика (см. ''рис.14.10''); двух разноименно заряженных шариков (см. ''рис.14.11''); двух одноименно заряженных шариков (см. ''рис.14.12''); двух пластин, заряды которых равны по модулю и противоположны по знаку (см. ''рис.14.13''). Последний пример особенно На рисунке 14.13 видно, что в пространстве между пластинами ближе к середине силовые линии параллельны: электрическое поле здесь одинаково во всех точках.<br>[[Image:a14.10.jpg|center]][[Image:a14.11.jpg|center]][[Image:a14.12.jpg|center]][[Image:a14.13.jpg|center]] Электрическое поле, напряженность которого одинакова во всех точках пространства, называется '''однородным'''. В ограниченной области пространства электрическое поле можно считать приближенно однородным, если напряженность поля внутри этой области меняется незначительно.<br> Однородное электрическое поле изображается параллельными линиями, расположенными на равных расстояниях друг от друга.<br> Силовые линии электрического поля не замкнуты, они начинаются на положительных зарядах и оканчиваются на отрицательных. Силовые линии непрерывны и не пересекаются, так как пересечение означало бы отсутствие определенного направления напряженности электрического поля в данной точке.<br> '''Поле заряженного шара.''' Рассмотрим теперь вопрос о электрическом поле заряженного проводящего шара радиусом ''R''. Заряд ''q'' равномерно распределен по поверхности шара. Силовые линии электрического поля, как вытекает из соображений симметрии, направлены вдоль продолжений радиусов шара (''рис.14.14, а'').<br>[[Image:a14.14.jpg|center]] Обратите внимание! Силовые линии вне шара распределены в пространстве точно так же, как и силовые линии точечного заряда (''рис.14.14, б''). Если совпадают картины силовых линий, то можно ожидать, что совпадают и напряженности полей. Поэтому на расстоянии ''r>R'' от центра шара напряженность поля определяется той же формулой (14.9), что и напряженность поля точечного заряда, помещенного в центре сферы:<br>[[Image:a92-1.jpg|center]] ''Внутри проводящего шара (''r<R'') напряженность поля равна нулю''. В этом мы скоро убедимся. На рисунке 14.14, в показана зависимость напряженности электрического поля заряженного проводящего шара от расстояния до его центра.<br> Картина силовых линий наглядно показывает, как направлена напряженность электрического поля в различных точках пространства. По изменению густоты линий можно судить об изменении модуля напряженности поля при переходе от точки к точке.<br><br><br> ???<br> 1. Что называют силовыми линиями электрического поля?<br> 2. Во всех ли случаях траектория заряженной частицы совпадает с силовой линией?<br> 3. Могут ли силовые линии пересекаться?<br> 4. Чему равна напряженность поля заряженного проводящего шара?<br> | + | Электрическое поле не действует на [[Нервная_система,_органы_чувств_и_поведение_рыб|органы чувств]]. Его мы не видим.<br> Однако мы можем получить некоторое представление о распределении поля, если нарисуем векторы напряженности поля в нескольких точках пространства (''рис.14.9'', слева). Картина будет более наглядной, если нарисовать непрерывные линии, касательные к которым в каждой точке, через которую они проходят, совпадают по направлению с векторами напряженности. Эти линии называют '''силовыми линиями электрического поля или линиями напряженности''' (''рис.14.9'', справа).<br>[[Image:A14.9.jpg|center|360x208px|Силовые линии электрического поля]] Направление силовых линий позволяет определить направление вектора напряженности в различных точках поля, а густота (число линий на единицу площади) силовых линий показывает, где напряженность поля больше. Так, на рисунках 14.10-14.13 густота силовых линий в точках ''А ''больше, чем в точках ''В''. Очевидно, [[Image:A92-2.jpg|65x23px|A92-2.jpg]].<br> Не следует думать, что линии напряженности существуют в действительности вроде растянутых упругих нитей или шнуров, как предполагал сам [[Електромагнітна_індукція._Досліди_Фарадея._Гіпотеза_Ампера|Фарадей]]. Линии напряженности помогают лишь наглядно представить распределение поля в пространстве. Они не более реальны, чем меридианы и параллели на земном шаре.<br> Однако силовые линии можно сделать видимыми. Если продолговатые кристаллики изолятора (например, хинина) хорошо перемешать в вязкой жидкости (например, в касторовом масле) и поместить туда заряженные тела, то вблизи этих тел кристаллики выстроятся в цепочки вдоль линий напряженности.<br> На рисунках приведены примеры линий напряженности: положительно заряженного шарика (см. ''рис.14.10''); двух разноименно заряженных шариков (см. ''рис.14.11''); двух одноименно заряженных шариков (см. ''рис.14.12''); двух пластин, заряды которых равны по модулю и противоположны по знаку (см. ''рис.14.13''). Последний пример особенно На рисунке 14.13 видно, что в пространстве между пластинами ближе к середине силовые линии параллельны: электрическое поле здесь одинаково во всех точках.<br>[[Image:A14.10.jpg|center|140x174px|Силовые линии электрического поля]][[Image:A14.11.jpg|center|196x215px|Силовые линии электрического поля]][[Image:A14.12.jpg|center|206x190px|Силовые линии электрического поля]][[Image:A14.13.jpg|center|262x117px|Силовые линии электрического поля]] Электрическое поле, напряженность которого одинакова во всех точках пространства, называется '''однородным'''. В ограниченной области пространства [[Электрическое_поле|электрическое поле]] можно считать приближенно однородным, если напряженность поля внутри этой области меняется незначительно.<br> Однородное электрическое поле изображается параллельными линиями, расположенными на равных расстояниях друг от друга.<br> Силовые линии электрического поля не замкнуты, они начинаются на положительных зарядах и оканчиваются на отрицательных. Силовые линии непрерывны и не пересекаются, так как пересечение означало бы отсутствие определенного направления напряженности электрического поля в данной точке.<br> '''Поле заряженного шара.''' Рассмотрим теперь вопрос о электрическом поле заряженного проводящего шара радиусом ''R''. Заряд ''q'' равномерно распределен по поверхности шара. Силовые линии электрического поля, как вытекает из соображений симметрии, направлены вдоль продолжений радиусов шара (''рис.14.14, а'').<br>[[Image:A14.14.jpg|center|555x224px|Силовые линии электрического поля]] Обратите внимание! [[Силовые_линии_электрического_поля._Напряженность_поля_заряженного_шара|Силовые]] линии вне шара распределены в пространстве точно так же, как и силовые линии точечного заряда (''рис.14.14, б''). Если совпадают картины силовых линий, то можно ожидать, что совпадают и напряженности полей. Поэтому на расстоянии ''r>R'' от центра шара напряженность поля определяется той же формулой (14.9), что и напряженность поля точечного заряда, помещенного в центре сферы:<br>[[Image:A92-1.jpg|center|195x44px|Силовые линии электрического поля]] ''Внутри проводящего шара (''r<R'') напряженность поля равна нулю''. В этом мы скоро убедимся. На рисунке 14.14, в показана зависимость напряженности электрического поля заряженного проводящего шара от расстояния до его центра.<br> Картина силовых линий наглядно показывает, как направлена напряженность электрического поля в различных точках пространства. По изменению густоты линий можно судить об изменении модуля напряженности поля при переходе от точки к точке.<br><br><br> ???<br> 1. Что называют силовыми линиями электрического поля?<br> 2. Во всех ли случаях траектория заряженной частицы совпадает с силовой линией?<br> 3. Могут ли силовые линии пересекаться?<br> 4. Чему равна напряженность поля заряженного проводящего шара?<br> |
| | | |
- | | + | <br> ''Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский, [[Физика_10_класс|Физика 10 класс]]'' |
- | ''Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский, Физика 10 класс'' | + | |
| | | |
| <br> <sub>Материалы [[Физика и астрономия|по физике]], задание и ответы по классам, планы конспектов уроков [[Физика 10 класс|по физике для 10 класса]]</sub> | | <br> <sub>Материалы [[Физика и астрономия|по физике]], задание и ответы по классам, планы конспектов уроков [[Физика 10 класс|по физике для 10 класса]]</sub> |
| | | |
| '''<u>Содержание урока</u>''' | | '''<u>Содержание урока</u>''' |
- | '''[[Image:1236084776 kr.jpg|10x10px]] конспект урока ''' | + | '''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] конспект урока ''' |
- | [[Image:1236084776 kr.jpg|10x10px]] опорный каркас | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] опорный каркас |
- | [[Image:1236084776 kr.jpg|10x10px]] презентация урока | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] презентация урока |
- | [[Image:1236084776 kr.jpg|10x10px]] акселеративные методы | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] акселеративные методы |
- | [[Image:1236084776 kr.jpg|10x10px]] интерактивные технологии | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] интерактивные технологии |
| | | |
| '''<u>Практика</u>''' | | '''<u>Практика</u>''' |
- | [[Image:1236084776 kr.jpg|10x10px]] задачи и упражнения | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] задачи и упражнения |
- | [[Image:1236084776 kr.jpg|10x10px]] самопроверка | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] самопроверка |
- | [[Image:1236084776 kr.jpg|10x10px]] практикумы, тренинги, кейсы, квесты | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] практикумы, тренинги, кейсы, квесты |
- | [[Image:1236084776 kr.jpg|10x10px]] домашние задания | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] домашние задания |
- | [[Image:1236084776 kr.jpg|10x10px]] дискуссионные вопросы | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] дискуссионные вопросы |
- | [[Image:1236084776 kr.jpg|10x10px]] риторические вопросы от учеников | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] риторические вопросы от учеников |
- |
| + | |
| '''<u>Иллюстрации</u>''' | | '''<u>Иллюстрации</u>''' |
- | '''[[Image:1236084776 kr.jpg|10x10px]] аудио-, видеоклипы и мультимедиа ''' | + | '''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] аудио-, видеоклипы и мультимедиа ''' |
- | [[Image:1236084776 kr.jpg|10x10px]] фотографии, картинки | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] фотографии, картинки |
- | [[Image:1236084776 kr.jpg|10x10px]] графики, таблицы, схемы | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] графики, таблицы, схемы |
- | [[Image:1236084776 kr.jpg|10x10px]] юмор, анекдоты, приколы, комиксы | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] юмор, анекдоты, приколы, комиксы |
- | [[Image:1236084776 kr.jpg|10x10px]] притчи, поговорки, кроссворды, цитаты | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] притчи, поговорки, кроссворды, цитаты |
| | | |
| '''<u>Дополнения</u>''' | | '''<u>Дополнения</u>''' |
- | '''[[Image:1236084776 kr.jpg|10x10px]] рефераты''' | + | '''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] рефераты''' |
- | [[Image:1236084776 kr.jpg|10x10px]] статьи | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] статьи |
- | [[Image:1236084776 kr.jpg|10x10px]] фишки для любознательных | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] фишки для любознательных |
- | [[Image:1236084776 kr.jpg|10x10px]] шпаргалки | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] шпаргалки |
- | [[Image:1236084776 kr.jpg|10x10px]] учебники основные и дополнительные | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] учебники основные и дополнительные |
- | [[Image:1236084776 kr.jpg|10x10px]] словарь терминов | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] словарь терминов |
- | [[Image:1236084776 kr.jpg|10x10px]] прочие | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] прочие |
| | | |
| <u>Совершенствование учебников и уроков | | <u>Совершенствование учебников и уроков |
- | </u>'''[[Image:1236084776 kr.jpg|10x10px]] исправление ошибок в учебнике''' | + | </u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] исправление ошибок в учебнике''' |
- | [[Image:1236084776 kr.jpg|10x10px]] обновление фрагмента в учебнике | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] обновление фрагмента в учебнике |
- | [[Image:1236084776 kr.jpg|10x10px]] элементы новаторства на уроке | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] элементы новаторства на уроке |
- | [[Image:1236084776 kr.jpg|10x10px]] замена устаревших знаний новыми | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] замена устаревших знаний новыми |
- |
| + | |
| '''<u>Только для учителей</u>''' | | '''<u>Только для учителей</u>''' |
- | '''[[Image:1236084776 kr.jpg|10x10px]] идеальные уроки ''' | + | '''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] идеальные уроки ''' |
- | [[Image:1236084776 kr.jpg|10x10px]] календарный план на год | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] календарный план на год |
- | [[Image:1236084776 kr.jpg|10x10px]] методические рекомендации | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] методические рекомендации |
- | [[Image:1236084776 kr.jpg|10x10px]] программы | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] программы |
- | [[Image:1236084776 kr.jpg|10x10px]] обсуждения | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] обсуждения |
| | | |
| | | |
Текущая версия на 13:18, 5 июля 2012
Гипермаркет знаний>>Физика и астрономия>>Физика 10 класс>>Физика: Силовые линии электрического поля. Напряженность поля заряженного шара
Электрическое поле не действует на органы чувств. Его мы не видим. Однако мы можем получить некоторое представление о распределении поля, если нарисуем векторы напряженности поля в нескольких точках пространства (рис.14.9, слева). Картина будет более наглядной, если нарисовать непрерывные линии, касательные к которым в каждой точке, через которую они проходят, совпадают по направлению с векторами напряженности. Эти линии называют силовыми линиями электрического поля или линиями напряженности (рис.14.9, справа). Направление силовых линий позволяет определить направление вектора напряженности в различных точках поля, а густота (число линий на единицу площади) силовых линий показывает, где напряженность поля больше. Так, на рисунках 14.10-14.13 густота силовых линий в точках А больше, чем в точках В. Очевидно, . Не следует думать, что линии напряженности существуют в действительности вроде растянутых упругих нитей или шнуров, как предполагал сам Фарадей. Линии напряженности помогают лишь наглядно представить распределение поля в пространстве. Они не более реальны, чем меридианы и параллели на земном шаре. Однако силовые линии можно сделать видимыми. Если продолговатые кристаллики изолятора (например, хинина) хорошо перемешать в вязкой жидкости (например, в касторовом масле) и поместить туда заряженные тела, то вблизи этих тел кристаллики выстроятся в цепочки вдоль линий напряженности. На рисунках приведены примеры линий напряженности: положительно заряженного шарика (см. рис.14.10); двух разноименно заряженных шариков (см. рис.14.11); двух одноименно заряженных шариков (см. рис.14.12); двух пластин, заряды которых равны по модулю и противоположны по знаку (см. рис.14.13). Последний пример особенно На рисунке 14.13 видно, что в пространстве между пластинами ближе к середине силовые линии параллельны: электрическое поле здесь одинаково во всех точках. Электрическое поле, напряженность которого одинакова во всех точках пространства, называется однородным. В ограниченной области пространства электрическое поле можно считать приближенно однородным, если напряженность поля внутри этой области меняется незначительно. Однородное электрическое поле изображается параллельными линиями, расположенными на равных расстояниях друг от друга. Силовые линии электрического поля не замкнуты, они начинаются на положительных зарядах и оканчиваются на отрицательных. Силовые линии непрерывны и не пересекаются, так как пересечение означало бы отсутствие определенного направления напряженности электрического поля в данной точке. Поле заряженного шара. Рассмотрим теперь вопрос о электрическом поле заряженного проводящего шара радиусом R. Заряд q равномерно распределен по поверхности шара. Силовые линии электрического поля, как вытекает из соображений симметрии, направлены вдоль продолжений радиусов шара (рис.14.14, а). Обратите внимание! Силовые линии вне шара распределены в пространстве точно так же, как и силовые линии точечного заряда (рис.14.14, б). Если совпадают картины силовых линий, то можно ожидать, что совпадают и напряженности полей. Поэтому на расстоянии r>R от центра шара напряженность поля определяется той же формулой (14.9), что и напряженность поля точечного заряда, помещенного в центре сферы: Внутри проводящего шара (r<R) напряженность поля равна нулю. В этом мы скоро убедимся. На рисунке 14.14, в показана зависимость напряженности электрического поля заряженного проводящего шара от расстояния до его центра. Картина силовых линий наглядно показывает, как направлена напряженность электрического поля в различных точках пространства. По изменению густоты линий можно судить об изменении модуля напряженности поля при переходе от точки к точке.
??? 1. Что называют силовыми линиями электрического поля? 2. Во всех ли случаях траектория заряженной частицы совпадает с силовой линией? 3. Могут ли силовые линии пересекаться? 4. Чему равна напряженность поля заряженного проводящего шара?
Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский, Физика 10 класс
Материалы по физике, задание и ответы по классам, планы конспектов уроков по физике для 10 класса
Содержание урока
конспект урока
опорный каркас
презентация урока
акселеративные методы
интерактивные технологии
Практика
задачи и упражнения
самопроверка
практикумы, тренинги, кейсы, квесты
домашние задания
дискуссионные вопросы
риторические вопросы от учеников
Иллюстрации
аудио-, видеоклипы и мультимедиа
фотографии, картинки
графики, таблицы, схемы
юмор, анекдоты, приколы, комиксы
притчи, поговорки, кроссворды, цитаты
Дополнения
рефераты
статьи
фишки для любознательных
шпаргалки
учебники основные и дополнительные
словарь терминов
прочие
Совершенствование учебников и уроков
исправление ошибок в учебнике
обновление фрагмента в учебнике
элементы новаторства на уроке
замена устаревших знаний новыми
Только для учителей
идеальные уроки
календарный план на год
методические рекомендации
программы
обсуждения
Интегрированные уроки
Если у вас есть исправления или предложения к данному уроку, напишите нам.
Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум.
|