KNOWLEDGE HYPERMARKET


Построение аксонометрических проекций
(Новая страница: «'''Гипермаркет знаний>>[[Черчение 9 класс|Черчение 9 ...»)
 
(5 промежуточных версий не показаны.)
Строка 3: Строка 3:
<metakeywords>Построение аксонометрических проекций</metakeywords><br>  
<metakeywords>Построение аксонометрических проекций</metakeywords><br>  
-
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Аксонометрические проекции любого предмета начинают строить с осей. Различные способы построения осей фронтальной диметрической и изометрической проекций показаны на рис. 88.<br>&nbsp;&nbsp;&nbsp;&nbsp; Затем по осям или прямым, параллельным им, откладывают размеры изображаемого предмета и его элементов с учетом коэффициентов искажения. Соединяя изображения отдельных элементов формы соответствующим образом, получают аксонометрическую проекцию предмета.<br>&nbsp;&nbsp;&nbsp; Построение плоских фигур в&nbsp;&nbsp; аксонометрических&nbsp;&nbsp; проекциях.Фигура, все точки которой находятся в одной плоскости, называется плоской. Примером плоских фигур могут служить треугольник, квадрат, прямоугольник, круг.<br>Знание приемов построения аксонометрических проекций плоских геометрических фигур (квадрата, треугольника, трапеции, шестиугольника) необходимо для построения аксонометрических проекций геометрических тел, моделей, деталей. Рассмотрим построение плоских фигур, лежащих в горизонтальной плоскости проекций (см. таблицу 4).<br>построение аксонометрической проекции&nbsp; квадрата. Сторону квадрата,<br>
+
Аксонометрические проекции любого предмета начинают строить с осей. Различные способы построения осей фронтальной диметрической и изометрической проекций показаны на рис. 88.<br>
 +
 
 +
Затем по осям или прямым, [[Параллельные_прямые|параллельным]] им, откладывают размеры изображаемого предмета и его элементов с учетом коэффициентов искажения. Соединяя изображения отдельных элементов формы соответствующим образом, получают аксонометрическую проекцию предмета.<br>
 +
 
 +
Построение плоских фигур в аксонометрических [[Построение_проекций_точки,_лежащей_на_поверхности_предмета|проекциях]]. Фигура, все точки которой находятся в одной плоскости, называется плоской. Примером плоских фигур могут служить треугольник, [[Делим_квадрат_на_части|квадрат]], прямоугольник, круг.
 +
 
 +
<br>Знание приемов построения аксонометрических проекций плоских геометрических фигур (квадрата, треугольника, трапеции, шестиугольника) необходимо для построения аксонометрических проекций геометрических тел, моделей, деталей. Рассмотрим построение плоских фигур, лежащих в [[Практична_робота_(на_місцевості):_1._Спостереження_за_висотою_сонця_над_горизонтом,_погодою,_сезонними_змінами_в_природі.|горизонт]]альной плоскости проекций (см. таблицу 4).
 +
 
 +
<br>построение аксонометрической проекции&nbsp; квадрата. Сторону квадрата,равную 20 миллиметрам, откладываем вдоль оси х, поскольку коэффициент искажения по ней равен единице. Через засечку проводим прямую, параллельную оси у. Вдоль оси у во фронтальной диметрической проекции откладываем отрезок, равный величине стороны квадрата, умноженной на коэффициент искажения, то есть 20x0,5=10 мм.
 +
 
 +
 
 +
 
 +
[[Image:Черчн11.jpg|300px|Аксонометрические оси]]<br>
 +
 
 +
На оси у в изометрической проекции откладываем размер стороны квадрата — 20 мм, так как коэффициент искажения по ней равен единице. Через полученные засечки проводим [[Координаты_середины_отрезка|отрезки]], параллельные оси х. Построили фронтальную диметрическую и изометрическую проекции квадрата.<br>
 +
 
 +
Построение аксонометрических проекций треугольника. Продолжим луч х за точку начала координат (т. О). От точки О по обе стороны на оси х откладываем отрезки, равные половине стороны треугольника, получив тем самым изображение стороны треугольника. По оси у во фронтальной диметрической проекции откладываем половину высоты треугольника (26x0,5=13 мм), а в изометрической проекции по оси у откладываем размер, равный высоте треугольника (26 мм). Полученные засечки соединяем отрезками прямых, получая аксонометрические изображения треугольника.
 +
 
 +
 
 +
 
 +
[[Image:Черчн12.jpg|300px|Проекции]]
 +
 
 +
<br>
 +
 
 +
Построение аксонометрических проекций трапеции. Продолжим луч х за центр координат (т. О). От точки О по обе стороны на оси х откладываем отрезки, равные половине верхнего основания трапеции (по 20 мм). Во фронтальной диметрической проекции по оси у откладываем половину высоты трапеции (15 мм), а в изометрической проекции по той же оси откладываем отрезок, равный высоте трапеции. Через полученные засечки проводим отрезки прямых, параллельные оси х. На них по обе стороны от оси откладываем отрезки, равные половине нижнего основания трапеции. Полученные проекции вершин трапеции соединяем последовательно между собой и получаем аксонометрические проекции [[Трапеция._Полные_уроки|трапеции]].<br>
 +
 
 +
Построение аксонометрических проекций шестиугольника. От точки О в обе стороны по оси х откладываем отрезки, равные 25:2=12,5 мм. Через полученные засечки проводим прямые, параллельные оси у, и на них от оси х на прямых, параллельных оси у, откладываем [[Откладывание_отрезков_и_углов|отрезки]], равные 1/4 стороны шестиугольника для фронтальной диметрической проекции и 1/2 стороны шестиугольника для прямоугольной изометрической проекции. Таким образом мы найдем четыре проекции вершин, принадлежащих шестиугольнику. По оси у от точки О во фронтальной диметрической проекции откладываем половину радиуса описанной окружности, а для изометрической проекции — величину К (радиус описанной окружности), получая еще две проекции вершин. Построенные проекции [[Граф._Вершины_и_рёбра_графа|вершин]] последовательно соединяем, получая аксонометрическое изображение шестиугольника.
 +
 
 +
<br>Рассмотрев построение аксонометрических проекций многоугольников, нетрудно заметить, что приемы получения их изображений во многом сходны как во фронтальной диметрической, так и в изометрической проекциях.<br>
 +
 
 +
Примеры построения аксонометрии плоских фигур, вертикально расположенных в пространстве, рассмотрите самостоятельно по таблице 5.
 +
 
 +
&nbsp; <br>[[Image:Чер65.jpg|300px|Таблица 5]]
 +
 
 +
<br>
 +
 
 +
[[Image:Чер66.jpg|300px|Изображение детали]]
 +
 
 +
<br>
 +
 
 +
'''Вопросы и задания'''<br>''1. Какие [[Проекции_группы_геометрических_тел|проекции]] называются аксонометрическими?<br>2. В чем сходство аксонометрических проекций?<br>3. Чем отличается косоугольная фронтальная диметрическая проекция от прямоугольной изометрической проекции?<br>4. Какие коэффициенты искажения используются для построения косоугольной фронтальной диметрической проекции?<br>5. Какие коэффициенты искажения имеет прямоугольная изометрическая проекция?<br>6. В рабочей тетради постройте аксонометрические проекции (косоугольную фронтальную диметрическую и прямоугольную изометрическую проекции) правильного треугольника со сторонами, равными 30 мм, и шестиугольника со сторонами, равными 20 мм, расположив их в пространстве [[Признак_параллельности_прямых._Полные_уроки|параллельно]] горизонтальной и фронтальной плоскостям проекций.''<br><br>[[Image:Чер67.jpg|300px|Модели деталей]]<br>
 +
 
 +
<br>
 +
 
 +
''7. Определите, в каких аксонометрических проекциях выполнены изображения проволочной модели, детали (рис. 89).''
 +
 
 +
''8. По наглядному изображению (рис. 90) постройте изометрическую проекцию детали, рассматривая ее форму как результат сложения или удаления нескольких призм.<br>9. На рис. 91 показаны [[Информационные_модели|модели]], составленные из спичечных коробков (прямоугольных параллелепипедов). Сконструируйте новую форму модели, склейте ее из спичечных коробков. Постройте аксонометрическую проекцию (на выбор) своей модели.''<br>
 +
 
 +
<br>
 +
 
 +
''Н.А.Гордеенко, В.В.Степакова - Черчение.,[[9_класс_уроки|9 класс]]<br>Отослано читателями из интернет-сайтов''
 +
 
 +
 
  '''<u>Содержание урока</u>'''
  '''<u>Содержание урока</u>'''
Строка 19: Строка 71:
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] дискуссионные вопросы
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] дискуссионные вопросы
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] риторические вопросы от учеников
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] риторические вопросы от учеников
-
 
+
  '''<u>Иллюстрации</u>'''
  '''<u>Иллюстрации</u>'''
  '''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] аудио-, видеоклипы и мультимедиа '''
  '''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] аудио-, видеоклипы и мультимедиа '''
Строка 41: Строка 93:
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] элементы новаторства на уроке  
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] элементы новаторства на уроке  
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] замена устаревших знаний новыми  
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] замена устаревших знаний новыми  
-
 
+
  '''<u>Только для учителей</u>'''
  '''<u>Только для учителей</u>'''
  '''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] идеальные уроки '''
  '''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] идеальные уроки '''
Строка 50: Строка 102:
   
   
   
   
-
  '''<u>Интегрированные уроки</u>'''<u>
+
'''<u>Интегрированные уроки</u>'''<u>
  </u>
  </u>

Текущая версия на 13:49, 27 августа 2012

Гипермаркет знаний>>Черчение 9 класс>>Черчение: Построение аксонометрических проекций


Аксонометрические проекции любого предмета начинают строить с осей. Различные способы построения осей фронтальной диметрической и изометрической проекций показаны на рис. 88.

Затем по осям или прямым, параллельным им, откладывают размеры изображаемого предмета и его элементов с учетом коэффициентов искажения. Соединяя изображения отдельных элементов формы соответствующим образом, получают аксонометрическую проекцию предмета.

Построение плоских фигур в аксонометрических проекциях. Фигура, все точки которой находятся в одной плоскости, называется плоской. Примером плоских фигур могут служить треугольник, квадрат, прямоугольник, круг.


Знание приемов построения аксонометрических проекций плоских геометрических фигур (квадрата, треугольника, трапеции, шестиугольника) необходимо для построения аксонометрических проекций геометрических тел, моделей, деталей. Рассмотрим построение плоских фигур, лежащих в горизонтальной плоскости проекций (см. таблицу 4).


построение аксонометрической проекции  квадрата. Сторону квадрата,равную 20 миллиметрам, откладываем вдоль оси х, поскольку коэффициент искажения по ней равен единице. Через засечку проводим прямую, параллельную оси у. Вдоль оси у во фронтальной диметрической проекции откладываем отрезок, равный величине стороны квадрата, умноженной на коэффициент искажения, то есть 20x0,5=10 мм.


Аксонометрические оси

На оси у в изометрической проекции откладываем размер стороны квадрата — 20 мм, так как коэффициент искажения по ней равен единице. Через полученные засечки проводим отрезки, параллельные оси х. Построили фронтальную диметрическую и изометрическую проекции квадрата.

Построение аксонометрических проекций треугольника. Продолжим луч х за точку начала координат (т. О). От точки О по обе стороны на оси х откладываем отрезки, равные половине стороны треугольника, получив тем самым изображение стороны треугольника. По оси у во фронтальной диметрической проекции откладываем половину высоты треугольника (26x0,5=13 мм), а в изометрической проекции по оси у откладываем размер, равный высоте треугольника (26 мм). Полученные засечки соединяем отрезками прямых, получая аксонометрические изображения треугольника.


Проекции


Построение аксонометрических проекций трапеции. Продолжим луч х за центр координат (т. О). От точки О по обе стороны на оси х откладываем отрезки, равные половине верхнего основания трапеции (по 20 мм). Во фронтальной диметрической проекции по оси у откладываем половину высоты трапеции (15 мм), а в изометрической проекции по той же оси откладываем отрезок, равный высоте трапеции. Через полученные засечки проводим отрезки прямых, параллельные оси х. На них по обе стороны от оси откладываем отрезки, равные половине нижнего основания трапеции. Полученные проекции вершин трапеции соединяем последовательно между собой и получаем аксонометрические проекции трапеции.

Построение аксонометрических проекций шестиугольника. От точки О в обе стороны по оси х откладываем отрезки, равные 25:2=12,5 мм. Через полученные засечки проводим прямые, параллельные оси у, и на них от оси х на прямых, параллельных оси у, откладываем отрезки, равные 1/4 стороны шестиугольника для фронтальной диметрической проекции и 1/2 стороны шестиугольника для прямоугольной изометрической проекции. Таким образом мы найдем четыре проекции вершин, принадлежащих шестиугольнику. По оси у от точки О во фронтальной диметрической проекции откладываем половину радиуса описанной окружности, а для изометрической проекции — величину К (радиус описанной окружности), получая еще две проекции вершин. Построенные проекции вершин последовательно соединяем, получая аксонометрическое изображение шестиугольника.


Рассмотрев построение аксонометрических проекций многоугольников, нетрудно заметить, что приемы получения их изображений во многом сходны как во фронтальной диметрической, так и в изометрической проекциях.

Примеры построения аксонометрии плоских фигур, вертикально расположенных в пространстве, рассмотрите самостоятельно по таблице 5.

 
Таблица 5


Изображение детали


Вопросы и задания
1. Какие проекции называются аксонометрическими?
2. В чем сходство аксонометрических проекций?
3. Чем отличается косоугольная фронтальная диметрическая проекция от прямоугольной изометрической проекции?
4. Какие коэффициенты искажения используются для построения косоугольной фронтальной диметрической проекции?
5. Какие коэффициенты искажения имеет прямоугольная изометрическая проекция?
6. В рабочей тетради постройте аксонометрические проекции (косоугольную фронтальную диметрическую и прямоугольную изометрическую проекции) правильного треугольника со сторонами, равными 30 мм, и шестиугольника со сторонами, равными 20 мм, расположив их в пространстве параллельно горизонтальной и фронтальной плоскостям проекций.


Модели деталей


7. Определите, в каких аксонометрических проекциях выполнены изображения проволочной модели, детали (рис. 89).

8. По наглядному изображению (рис. 90) постройте изометрическую проекцию детали, рассматривая ее форму как результат сложения или удаления нескольких призм.
9. На рис. 91 показаны модели, составленные из спичечных коробков (прямоугольных параллелепипедов). Сконструируйте новую форму модели, склейте ее из спичечных коробков. Постройте аксонометрическую проекцию (на выбор) своей модели.


Н.А.Гордеенко, В.В.Степакова - Черчение.,9 класс
Отослано читателями из интернет-сайтов


Содержание урока
1236084776 kr.jpg конспект урока                       
1236084776 kr.jpg опорный каркас  
1236084776 kr.jpg презентация урока
1236084776 kr.jpg акселеративные методы 
1236084776 kr.jpg интерактивные технологии 

Практика
1236084776 kr.jpg задачи и упражнения 
1236084776 kr.jpg самопроверка
1236084776 kr.jpg практикумы, тренинги, кейсы, квесты
1236084776 kr.jpg домашние задания
1236084776 kr.jpg дискуссионные вопросы
1236084776 kr.jpg риторические вопросы от учеников

Иллюстрации
1236084776 kr.jpg аудио-, видеоклипы и мультимедиа 
1236084776 kr.jpg фотографии, картинки 
1236084776 kr.jpg графики, таблицы, схемы
1236084776 kr.jpg юмор, анекдоты, приколы, комиксы
1236084776 kr.jpg притчи, поговорки, кроссворды, цитаты

Дополнения
1236084776 kr.jpg рефераты
1236084776 kr.jpg статьи 
1236084776 kr.jpg фишки для любознательных 
1236084776 kr.jpg шпаргалки 
1236084776 kr.jpg учебники основные и дополнительные
1236084776 kr.jpg словарь терминов                          
1236084776 kr.jpg прочие 

Совершенствование учебников и уроков
1236084776 kr.jpg исправление ошибок в учебнике
1236084776 kr.jpg обновление фрагмента в учебнике 
1236084776 kr.jpg элементы новаторства на уроке 
1236084776 kr.jpg замена устаревших знаний новыми 

Только для учителей
1236084776 kr.jpg идеальные уроки 
1236084776 kr.jpg календарный план на год  
1236084776 kr.jpg методические рекомендации  
1236084776 kr.jpg программы
1236084776 kr.jpg обсуждения


Интегрированные уроки


Если у вас есть исправления или предложения к данному уроку, напишите нам.

Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум.