KNOWLEDGE HYPERMARKET


Еще одна формула корней квадратного уравнения
(Создана новая страница размером <metakeywords>Гипермаркет Знаний - первый в мире!, Гипермаркет Знаний, Математика, ...)
 
(3 промежуточные версии не показаны)
Строка 1: Строка 1:
-
<metakeywords>Гипермаркет Знаний - первый в мире!, Гипермаркет Знаний, Математика, 8 класс, Алгебра, урок, на Тему, Еще одна формула корней квадратного уравнения</metakeywords>  
+
<metakeywords>Гипермаркет Знаний - первый в мире!, Гипермаркет Знаний, Математика, 8 класс, Алгебра, урок, на Тему, Еще одна формула корней квадратного уравнения, корни, формулу, квадратного уравнения</metakeywords>  
-
'''[[Гипермаркет знаний - первый в мире!|Гипермаркет знаний]]&gt;&gt;[[Математика|Математика]]&gt;&gt;[[Математика 8 класс|Математика 8 класс]]&gt;&gt;Математика:Еще одна формула корней квадратного уравнения'''  
+
'''[[Гипермаркет знаний - первый в мире!|Гипермаркет знаний]]&gt;&gt;[[Математика|Математика]]&gt;&gt;[[Математика 8 класс|Математика 8 класс]]&gt;&gt;Математика: Еще одна формула корней квадратного уравнения'''  
-
<br>  
+
<br> <br>  
 +
'''Еще одна формула корней квадратного уравнения'''
 +
<br>Мы с вами уже привыкли к тому, что '''[[Степени и корни. Степенные функции. Основные результаты|корни]]''' квадратного уравнения ах<sup>2</sup> + bх + с = 0 находятся по формуле
-
'''&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; ЕЩЕ ОДНА ФОРМУЛА КОРНЕЙ КВАДРАТНОГО УРАВНЕНИЯ '''
+
[[Image:14-06-37.jpg|320px|Формула]]<br><br>(если, конечно, дискриминант D = b<sup>2</sup> — 4ас — неотрицательное число; если же D &lt; О, то приведенная формула не имеет смысла, а квадратное уравнение не имеет корней).
-
<br>Мы с вами уже привыкли к тому, что корни квадратного уравнения ах<sup>2</sup> + + с = 0 находятся по формуле
+
Но математики никогда не пройдут мимо возможности облегчить себе вычисления. Они обнаружили, что '''[[Конспект уроку на тему «Формула коренів квадратного рівняння»|формулу]]''' (1) можно упростить в случае, когда коэффициент b имеет вид b = 2k, в частности, если b есть четное число. <br>В самом деле, пусть у квадратного уравнения ах2 + Ьх + с = 0.
-
[[Image:14-06-37.jpg]]<br><br>(если, конечно, дискриминант D = b<sup>2</sup> — 4ас — неотрицательное число; если же D &lt; О, то приведенная формула не имеет смысла, а квадратное уравнение не имеет корней). <br>Но математики никогда не пройдут мимо возможности облегчить себе вычисления. Они обнаружили, что формулу (1) можно упростить в случае, когда коэффициент b имеет вид b = 2k, в частности, если Ъ есть четное число. <br>В самом деле, пусть у квадратного уравнения ах2 + Ьх + с = О <br>коэффициент Ъ имеет вид Ъ — 2k. Подставив в формулу (1) число 2k вместо b, получим:
+
коэффициент b имеет вид b — 2k. Подставив в формулу (1) число 2k вместо b, получим: [[Image:14-06-38.jpg|480px|Решение]]<br><br>Итак, корни квадратного уравнения ах<sup>2</sup> + + 2kx + с = О можно вычислять по формуле
-
[[Image:14-06-38.jpg]]<br><br>Итак, корни квадратного уравнения ах<sup>2</sup> + + 2kx + с = О можно вычислять по формуле
+
[[Image:14-06-39.jpg|320px|Формула]]<br>Сравните эту формулу с формулой (1). В чем ее преимущества?
-
[[Image:14-06-39.jpg]]<br>Сравните эту формулу с формулой (1). В чем ее преимущества?
+
Во-первых, в квадрат возводится не число b, а его половина [[Image:14-06-40.jpg|Формула]]  
-
Во-первых, в квадрат возводится не число b, а его половина [[Image:14-06-40.jpg]]
+
Во-вторых, вычитается из этого квадрата не 4ас, a просто ас.  
-
Во-вторых, вычитается из этого квадрата не 4ас, a просто ас.
+
В-третьих, в знаменателе содержится не , а просто а. Как видите, по крайней мере в трех моментах мы облегчаем себе выкладки. Особенно приятно выглядит формула (2) для приведенного '''[[Презентація уроку на тему "Квадратні рівняння. Теорема Вієта"|квадратного уравнения]]''', т. е. для случая, когда а = 1. Тогда получаем
-
В-третьих, в знаменателе содержится не 2а, а просто а. Как видите, по крайней мере в трех моментах мы облегчаем себе выкладки. Особенно приятно выглядит формула (2) для приведенного квадратного уравнения, т. е. для случая, когда а = 1. Тогда получаем
+
[[Image:14-06-41.jpg|320px|Формула]]<br><br>Это — формула корней уравнения х<sup>2</sup> + 2kx + с — 0.  
-
[[Image:14-06-41.jpg]]<br><br>Это — формула корней уравнения х<sup>2</sup> + 2kx + с — 0. <br>Вернемся к предыдущему параграфу и еще раз решим некоторые из имеющихся там квадратных уравнений — для сравнения трудоемкости вычислений по старой формуле (формуле (1)) и по новой формуле (формуле(2) или (3)). <br>В примере 1 из § 22 получилось квадратное уравнение х<sup>2</sup> + 10x - 7200 = 0. <br>Мы решали его так:
+
Вернемся к предыдущему параграфу и еще раз решим некоторые из имеющихся там квадратных уравнений — для сравнения трудоемкости вычислений по старой формуле (формуле (1)) и по новой формуле (формуле(2) или (3)).  
-
[[Image:14-06-42.jpg]]<br><br>А теперь решим то же квадратное уравнение по формуле (3), учитывая, что в данном случае b = 10, т. е. 2k = 10, k = 5. Имеем
+
В примере 1 из § 22 получилось квадратное уравнение х<sup>2</sup> + 10x - 7200 = 0.  
-
[[Image:14-06-43.jpg]]<br><br>В примере 3 из § 22 было получено квадратное уравнение <br>х<sup>2</sup> - 92х + 960 = 0. <br>Мы решали его так:  
+
Мы решали его так:
-
[[Image:14-06-44.jpg]]<br><br>А теперь решим это квадратное уравнение по формуле (3), учитывая, что в данном случае b = - 92, т. е. 2k = - 92, k = - 46. <br>Имеем  
+
[[Image:14-06-42.jpg|420px|Решение]]<br><br>А теперь решим то же квадратное уравнение по формуле (3), учитывая, что в данном случае b = 10, т. е. 2k = 10, k = 5. Имеем  
-
[[Image:14-06-45.jpg]]<br><br>Думается, что преимущества новой формулы вы оценили. <br>В заключение параграфа рассмотрим еще одно квадратное уравнение, которое мы решали по старой формуле (см. пример 6 из § 20), а теперь решим по-новому. Речь идет об уравнении
+
[[Image:14-06-43.jpg|420px|Решение]]<br><br>В примере 3 из § 22 было получено квадратное уравнение х<sup>2</sup> - 92х + 960 = 0.  
-
[[Image:14-06-46.jpg]]<br><br>Сравните этот вариант решения с тем, который был предложен в § 20. Согласитесь, что так работать проще. <br>Итак, если вам встретилось квадратное уравнение вида ах<sup>2</sup> + 2kx + с = 0, то советуем пользоваться формулой (2) (или (3), в случае, когда а = 1), поскольку вычисления будут проще. Но если вы опасаетесь запутаться в обилии формул, то пользуйтесь привычной общей формулой корней квадратного уравнения. <br><br><br>
+
Мы решали его так:
 +
[[Image:14-06-44.jpg|320px|Решение]]<br><br>А теперь решим это квадратное уравнение по формуле (3), учитывая, что в данном случае b = - 92, т. е. 2k = - 92, k = - 46.
 +
Имеем
-
<sub>Календарно-тематическое планирование по математике, задачи и ответы школьнику [[Гипермаркет знаний - первый в мире!|онлайн]], курсы учителю по математике [[Математика|скачать]]</sub>  
+
[[Image:14-06-45.jpg|320px|Решение]]<br><br>Думается, что преимущества новой формулы вы оценили.
 +
 
 +
В заключение параграфа рассмотрим еще одно квадратное уравнение, которое мы решали по старой формуле (см. пример 6 из § 20), а теперь решим по-новому. Речь идет об уравнении
 +
 
 +
[[Image:14-06-46.jpg|420px|Решение]]<br><br>Сравните этот вариант решения с тем, который был предложен в § 20. Согласитесь, что так работать проще. <br>Итак, если вам встретилось квадратное уравнение вида ах<sup>2</sup> + 2kx + с = 0, то советуем пользоваться формулой (2) (или (3), в случае, когда а = 1), поскольку вычисления будут проще. Но если вы опасаетесь запутаться в обилии формул, то пользуйтесь привычной общей формулой корней квадратного уравнения. <br><br>
 +
 
 +
''Мордкович А. Г., [http://xvatit.com/vuzi/ '''Алгебра''']. 8 кл.: Учеб. для общеобразоват. учреждений.— 3-е изд., доработ. — М.: Мнемозина, 2001. — 223 с: ил. ''
 +
 
 +
<br>
 +
 
 +
<sub>[[Гипермаркет знаний - первый в мире!|онлайн]] библиотека с учебниками и книгами, планы конспектов уроков по математике, задания по математике 8 класса [[Математика|скачать]]</sub>  
<br>  
<br>  
  '''<u>Содержание урока</u>'''
  '''<u>Содержание урока</u>'''
-
  <u></u>'''[[Image:1236084776 kr.jpg|10x10px]] конспект урока                      '''
+
  <u></u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] конспект урока                      '''
-
  [[Image:1236084776 kr.jpg|10x10px]] опорный каркас   
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] опорный каркас   
-
  [[Image:1236084776 kr.jpg|10x10px]] презентация урока
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] презентация урока
-
  [[Image:1236084776 kr.jpg|10x10px]] акселеративные методы  
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] акселеративные методы  
-
  [[Image:1236084776 kr.jpg|10x10px]] интерактивные технологии  
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] интерактивные технологии  
   
   
  '''<u>Практика</u>'''
  '''<u>Практика</u>'''
-
  [[Image:1236084776 kr.jpg|10x10px]] задачи и упражнения  
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] задачи и упражнения  
-
  [[Image:1236084776 kr.jpg|10x10px]] самопроверка
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] самопроверка
-
  [[Image:1236084776 kr.jpg|10x10px]] практикумы, тренинги, кейсы, квесты
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] практикумы, тренинги, кейсы, квесты
-
  [[Image:1236084776 kr.jpg|10x10px]] домашние задания
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] домашние задания
-
  [[Image:1236084776 kr.jpg|10x10px]] дискуссионные вопросы
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] дискуссионные вопросы
-
  [[Image:1236084776 kr.jpg|10x10px]] риторические вопросы от учеников
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] риторические вопросы от учеников
-
 
+
  '''<u>Иллюстрации</u>'''
  '''<u>Иллюстрации</u>'''
-
  <u></u>'''[[Image:1236084776 kr.jpg|10x10px]] аудио-, видеоклипы и мультимедиа '''
+
  <u></u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] аудио-, видеоклипы и мультимедиа '''
-
  [[Image:1236084776 kr.jpg|10x10px]] фотографии, картинки  
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] фотографии, картинки  
-
  [[Image:1236084776 kr.jpg|10x10px]] графики, таблицы, схемы
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] графики, таблицы, схемы
-
  [[Image:1236084776 kr.jpg|10x10px]] юмор, анекдоты, приколы, комиксы
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] юмор, анекдоты, приколы, комиксы
-
  [[Image:1236084776 kr.jpg|10x10px]] притчи, поговорки, кроссворды, цитаты
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] притчи, поговорки, кроссворды, цитаты
   
   
  '''<u>Дополнения</u>'''
  '''<u>Дополнения</u>'''
-
  <u></u>'''[[Image:1236084776 kr.jpg|10x10px]] рефераты'''
+
  <u></u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] рефераты'''
-
  [[Image:1236084776 kr.jpg|10x10px]] статьи  
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] статьи  
-
  [[Image:1236084776 kr.jpg|10x10px]] фишки для любознательных  
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] фишки для любознательных  
-
  [[Image:1236084776 kr.jpg|10x10px]] шпаргалки  
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] шпаргалки  
-
  [[Image:1236084776 kr.jpg|10x10px]] учебники основные и дополнительные
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] учебники основные и дополнительные
-
  [[Image:1236084776 kr.jpg|10x10px]] словарь терминов                           
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] словарь терминов                           
-
  [[Image:1236084776 kr.jpg|10x10px]] прочие  
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] прочие  
  '''<u></u>'''
  '''<u></u>'''
  <u>Совершенствование учебников и уроков
  <u>Совершенствование учебников и уроков
-
  </u>'''[[Image:1236084776 kr.jpg|10x10px]] исправление ошибок в учебнике'''
+
  </u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] исправление ошибок в учебнике'''
-
  [[Image:1236084776 kr.jpg|10x10px]] обновление фрагмента в учебнике  
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] обновление фрагмента в учебнике  
-
  [[Image:1236084776 kr.jpg|10x10px]] элементы новаторства на уроке  
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] элементы новаторства на уроке  
-
  [[Image:1236084776 kr.jpg|10x10px]] замена устаревших знаний новыми  
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] замена устаревших знаний новыми  
-
 
+
  '''<u>Только для учителей</u>'''
  '''<u>Только для учителей</u>'''
-
  <u></u>'''[[Image:1236084776 kr.jpg|10x10px]] идеальные уроки '''
+
  <u></u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] идеальные уроки '''
-
  [[Image:1236084776 kr.jpg|10x10px]] календарный план на год   
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] календарный план на год   
-
  [[Image:1236084776 kr.jpg|10x10px]] методические рекомендации   
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] методические рекомендации   
-
  [[Image:1236084776 kr.jpg|10x10px]] программы
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] программы
-
  [[Image:1236084776 kr.jpg|10x10px]] обсуждения
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] обсуждения
   
   
   
   

Текущая версия на 12:47, 8 октября 2012

Гипермаркет знаний>>Математика>>Математика 8 класс>>Математика: Еще одна формула корней квадратного уравнения



Еще одна формула корней квадратного уравнения


Мы с вами уже привыкли к тому, что корни квадратного уравнения ах2 + bх + с = 0 находятся по формуле

Формула

(если, конечно, дискриминант D = b2 — 4ас — неотрицательное число; если же D < О, то приведенная формула не имеет смысла, а квадратное уравнение не имеет корней).

Но математики никогда не пройдут мимо возможности облегчить себе вычисления. Они обнаружили, что формулу (1) можно упростить в случае, когда коэффициент b имеет вид b = 2k, в частности, если b есть четное число.
В самом деле, пусть у квадратного уравнения ах2 + Ьх + с = 0.

коэффициент b имеет вид b — 2k. Подставив в формулу (1) число 2k вместо b, получим: Решение

Итак, корни квадратного уравнения ах2 + + 2kx + с = О можно вычислять по формуле

Формула
Сравните эту формулу с формулой (1). В чем ее преимущества?

Во-первых, в квадрат возводится не число b, а его половина Формула

Во-вторых, вычитается из этого квадрата не 4ас, a просто ас.

В-третьих, в знаменателе содержится не 2а, а просто а. Как видите, по крайней мере в трех моментах мы облегчаем себе выкладки. Особенно приятно выглядит формула (2) для приведенного квадратного уравнения, т. е. для случая, когда а = 1. Тогда получаем

Формула

Это — формула корней уравнения х2 + 2kx + с — 0.

Вернемся к предыдущему параграфу и еще раз решим некоторые из имеющихся там квадратных уравнений — для сравнения трудоемкости вычислений по старой формуле (формуле (1)) и по новой формуле (формуле(2) или (3)).

В примере 1 из § 22 получилось квадратное уравнение х2 + 10x - 7200 = 0.

Мы решали его так:

Решение

А теперь решим то же квадратное уравнение по формуле (3), учитывая, что в данном случае b = 10, т. е. 2k = 10, k = 5. Имеем

Решение

В примере 3 из § 22 было получено квадратное уравнение х2 - 92х + 960 = 0.

Мы решали его так:

Решение

А теперь решим это квадратное уравнение по формуле (3), учитывая, что в данном случае b = - 92, т. е. 2k = - 92, k = - 46.

Имеем

Решение

Думается, что преимущества новой формулы вы оценили.

В заключение параграфа рассмотрим еще одно квадратное уравнение, которое мы решали по старой формуле (см. пример 6 из § 20), а теперь решим по-новому. Речь идет об уравнении

Решение

Сравните этот вариант решения с тем, который был предложен в § 20. Согласитесь, что так работать проще.
Итак, если вам встретилось квадратное уравнение вида ах2 + 2kx + с = 0, то советуем пользоваться формулой (2) (или (3), в случае, когда а = 1), поскольку вычисления будут проще. Но если вы опасаетесь запутаться в обилии формул, то пользуйтесь привычной общей формулой корней квадратного уравнения.

Мордкович А. Г., Алгебра. 8 кл.: Учеб. для общеобразоват. учреждений.— 3-е изд., доработ. — М.: Мнемозина, 2001. — 223 с: ил.


онлайн библиотека с учебниками и книгами, планы конспектов уроков по математике, задания по математике 8 класса скачать


Содержание урока
1236084776 kr.jpg конспект урока                       
1236084776 kr.jpg опорный каркас  
1236084776 kr.jpg презентация урока
1236084776 kr.jpg акселеративные методы 
1236084776 kr.jpg интерактивные технологии 

Практика
1236084776 kr.jpg задачи и упражнения 
1236084776 kr.jpg самопроверка
1236084776 kr.jpg практикумы, тренинги, кейсы, квесты
1236084776 kr.jpg домашние задания
1236084776 kr.jpg дискуссионные вопросы
1236084776 kr.jpg риторические вопросы от учеников

Иллюстрации
1236084776 kr.jpg аудио-, видеоклипы и мультимедиа 
1236084776 kr.jpg фотографии, картинки 
1236084776 kr.jpg графики, таблицы, схемы
1236084776 kr.jpg юмор, анекдоты, приколы, комиксы
1236084776 kr.jpg притчи, поговорки, кроссворды, цитаты

Дополнения
1236084776 kr.jpg рефераты
1236084776 kr.jpg статьи 
1236084776 kr.jpg фишки для любознательных 
1236084776 kr.jpg шпаргалки 
1236084776 kr.jpg учебники основные и дополнительные
1236084776 kr.jpg словарь терминов                          
1236084776 kr.jpg прочие 

Совершенствование учебников и уроков
1236084776 kr.jpg исправление ошибок в учебнике
1236084776 kr.jpg обновление фрагмента в учебнике 
1236084776 kr.jpg элементы новаторства на уроке 
1236084776 kr.jpg замена устаревших знаний новыми 

Только для учителей
1236084776 kr.jpg идеальные уроки 
1236084776 kr.jpg календарный план на год  
1236084776 kr.jpg методические рекомендации  
1236084776 kr.jpg программы
1236084776 kr.jpg обсуждения


Интегрированные уроки


Если у вас есть исправления или предложения к данному уроку, напишите нам.

Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум.