|
|
(1 промежуточная версия не показана) |
Строка 1: |
Строка 1: |
- | <metakeywords>Гипермаркет Знаний - первый в мире!, Гипермаркет Знаний, Математика, 7 класс, Алгебра, урок, на Тему, Свойство противолежащих сторон, углов параллелограмма</metakeywords> | + | <metakeywords>Гипермаркет Знаний - первый в мире!, Гипермаркет Знаний, Математика, 8 класс, Алгебра, урок, на Тему, Свойство противолежащих сторон, углов параллелограмма, углы, треугольников, четырехугольник</metakeywords> |
| | | |
- | '''[[Гипермаркет знаний - первый в мире!|Гипермаркет знаний]]>>[[Математика|Математика]]>>[[Математика 7 класс|Математика 7 класс]]>>Математика: Свойство противолежащих сторон и углов параллелограмма''' | + | '''[[Гипермаркет знаний - первый в мире!|Гипермаркет знаний]]>>[[Математика|Математика]]>>[[Математика 8 класс|Математика 8 класс]]>>Математика: Свойство противолежащих сторон и углов параллелограмма''' |
| | | |
| <br> | | <br> |
| | | |
- | '''СВОЙСТВО ПРОТИВОЛЕЖАЩИХ СТОРОН И УГЛОВ ПАРАЛЛЕЛОГРАММА'''
| + | '''Свойство противолежащих сторон и углов параллелограмма''' |
| | | |
- | <br>Теорема 6.3.'''''У параллелограмма противолежащие сто роны равны, противолежащие углы равны.''''' | + | <br>Теорема 6.3. У параллелограмма противолежащие сто роны равны, противолежащие '''[[Угол|углы]]''' равны. |
| | | |
- | Доказательство. Пусть ABCD — данный параллелограмм (рис. 122). Проведем диагонали параллелограмма. Пусть О — точка их пересечения. | + | Доказательство. Пусть ABCD — данный параллелограмм (рис. 122). Проведем диагонали параллелограмма. Пусть О — точка их пересечения. |
| | | |
- | Равенство противолежащих сторон АВ и CD следует из равенства треугольников АОВ и COD. У них углы при вершине О равны как вертикальные, а ОА = ОС и OB—OD по свойству диагоналей параллелограмма. Точно так же из равенства треугольников AOD и СОВ следует равенство другой пары противолежащих сторон — AD и ВС. | + | Равенство противолежащих сторон АВ и CD следует из равенства треугольников АОВ и COD. У них углы при вершине О равны как вертикальные, а ОА = ОС и OB—OD по свойству диагоналей параллелограмма. Точно так же из равенства '''[[Презентація уроку на тему «Трикутник і його елементи»|треугольников]]''' AOD и СОВ следует равенство другой пары противолежащих сторон — AD и ВС. |
| | | |
- | Равенство противолежащих углов ABC и CDA следует из равенства треугольников ABC и CD А (по трем сторонам). У них AB=CD и BC=DA по доказанному, а сторона АС общая. Точно так же равенство противолежащих углов BCD и DAB следует из равенства треугольников BCD и DAB. Теорема доказана полностью. | + | Равенство противолежащих углов ABC и CDA следует из равенства треугольников ABC и CD А (по трем сторонам). У них AB=CD и BC=DA по доказанному, а сторона АС общая. Точно так же равенство противолежащих углов BCD и DAB следует из равенства треугольников BCD и DAB. Теорема доказана полностью. |
| | | |
| + | <br> |
| | | |
| + | [[Image:22-06-5.jpg|480px|Параллелограмм]]<br><br>Задача (18). Докажите, что если у четырехугольника две стороны параллельны и равны, то он является '''[[Паралелограм. Ознаки паралелограма. Властивості паралелограма|параллелограммом]]'''. |
| | | |
- | [[Image:22-06-5.jpg]]<br><br>Задача (18). Докажите, что если у четырехугольника две стороны параллельны и равны, то он является параллелограммом.
| + | Решение. Пусть ABCD — данный четырехугольник, у которого стороны АВ и CD параллельны и равны (рис. 123). Проведем через вершину В прямую b, параллельную стороне AD. Эта прямая пересекает луч DC в некоторой точке С<sub>1</sub>. Четырехугольник ABC<sub>1</sub>D есть параллелограмм. Так как у параллелограмма противолежащие стороны равны, то C<sub>1</sub>D=AB. А по условию АВ = =CD. Значит, DC=DC<sub>1</sub>. Отсюда следует, что точки С и C<sub>1</sub> совпадают. |
| | | |
- | Решение. Пусть ABCD — данный четырехугольник, у которого стороны АВ и CD параллельны и равны (рис. 123). Проведем через вершину В прямую b, параллельную стороне AD. Эта прямая пересекает луч DC в некоторой точке С<sub>1</sub>. Четырехугольник ABC<sub>1</sub>D есть параллелограмм. Так как у параллелограмма противолежащие стороны равны, то C<sub>1</sub>D=AB. А по условию АВ = =CD. Значит, DC=DC<sub>1</sub>. Отсюда следует, что точки С и C<sub>1</sub> совпадают.
| + | Таким образом, '''[[Чотирикутник i його елементи|четырехугольник]]''' ABCD совпадает с параллелограммом ABC<sub>1</sub>D, а значит, является параллелограммом. |
| | | |
- | Таким образом, четырехугольник ABCD совпадает с параллелограммом ABC<sub>1</sub>D, а значит, является параллелограммом.
| + | <br> ''А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений'' <br> |
| | | |
| | | |
- |
| |
- | <br> ''А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений'' <br>
| |
| | | |
| <sub>Календарно-тематическое планирование по математике, задачи и ответы школьнику [[Гипермаркет знаний - первый в мире!|онлайн]], курсы учителю по математике [[Математика|скачать]]</sub> | | <sub>Календарно-тематическое планирование по математике, задачи и ответы школьнику [[Гипермаркет знаний - первый в мире!|онлайн]], курсы учителю по математике [[Математика|скачать]]</sub> |
Строка 32: |
Строка 32: |
| | | |
| '''<u>Содержание урока</u>''' | | '''<u>Содержание урока</u>''' |
- | <u></u>'''[[Image:1236084776 kr.jpg|10x10px]] конспект урока ''' | + | <u></u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] конспект урока ''' |
- | [[Image:1236084776 kr.jpg|10x10px]] опорный каркас | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] опорный каркас |
- | [[Image:1236084776 kr.jpg|10x10px]] презентация урока | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] презентация урока |
- | [[Image:1236084776 kr.jpg|10x10px]] акселеративные методы | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] акселеративные методы |
- | [[Image:1236084776 kr.jpg|10x10px]] интерактивные технологии | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] интерактивные технологии |
| | | |
| '''<u>Практика</u>''' | | '''<u>Практика</u>''' |
- | [[Image:1236084776 kr.jpg|10x10px]] задачи и упражнения | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] задачи и упражнения |
- | [[Image:1236084776 kr.jpg|10x10px]] самопроверка | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] самопроверка |
- | [[Image:1236084776 kr.jpg|10x10px]] практикумы, тренинги, кейсы, квесты | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] практикумы, тренинги, кейсы, квесты |
- | [[Image:1236084776 kr.jpg|10x10px]] домашние задания | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] домашние задания |
- | [[Image:1236084776 kr.jpg|10x10px]] дискуссионные вопросы | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] дискуссионные вопросы |
- | [[Image:1236084776 kr.jpg|10x10px]] риторические вопросы от учеников | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] риторические вопросы от учеников |
- |
| + | |
| '''<u>Иллюстрации</u>''' | | '''<u>Иллюстрации</u>''' |
- | <u></u>'''[[Image:1236084776 kr.jpg|10x10px]] аудио-, видеоклипы и мультимедиа ''' | + | <u></u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] аудио-, видеоклипы и мультимедиа ''' |
- | [[Image:1236084776 kr.jpg|10x10px]] фотографии, картинки | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] фотографии, картинки |
- | [[Image:1236084776 kr.jpg|10x10px]] графики, таблицы, схемы | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] графики, таблицы, схемы |
- | [[Image:1236084776 kr.jpg|10x10px]] юмор, анекдоты, приколы, комиксы | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] юмор, анекдоты, приколы, комиксы |
- | [[Image:1236084776 kr.jpg|10x10px]] притчи, поговорки, кроссворды, цитаты | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] притчи, поговорки, кроссворды, цитаты |
| | | |
| '''<u>Дополнения</u>''' | | '''<u>Дополнения</u>''' |
- | <u></u>'''[[Image:1236084776 kr.jpg|10x10px]] рефераты''' | + | <u></u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] рефераты''' |
- | [[Image:1236084776 kr.jpg|10x10px]] статьи | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] статьи |
- | [[Image:1236084776 kr.jpg|10x10px]] фишки для любознательных | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] фишки для любознательных |
- | [[Image:1236084776 kr.jpg|10x10px]] шпаргалки | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] шпаргалки |
- | [[Image:1236084776 kr.jpg|10x10px]] учебники основные и дополнительные | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] учебники основные и дополнительные |
- | [[Image:1236084776 kr.jpg|10x10px]] словарь терминов | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] словарь терминов |
- | [[Image:1236084776 kr.jpg|10x10px]] прочие | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] прочие |
| '''<u></u>''' | | '''<u></u>''' |
| <u>Совершенствование учебников и уроков | | <u>Совершенствование учебников и уроков |
- | </u>'''[[Image:1236084776 kr.jpg|10x10px]] исправление ошибок в учебнике''' | + | </u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] исправление ошибок в учебнике''' |
- | [[Image:1236084776 kr.jpg|10x10px]] обновление фрагмента в учебнике | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] обновление фрагмента в учебнике |
- | [[Image:1236084776 kr.jpg|10x10px]] элементы новаторства на уроке | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] элементы новаторства на уроке |
- | [[Image:1236084776 kr.jpg|10x10px]] замена устаревших знаний новыми | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] замена устаревших знаний новыми |
- |
| + | |
| '''<u>Только для учителей</u>''' | | '''<u>Только для учителей</u>''' |
- | <u></u>'''[[Image:1236084776 kr.jpg|10x10px]] идеальные уроки ''' | + | <u></u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] идеальные уроки ''' |
- | [[Image:1236084776 kr.jpg|10x10px]] календарный план на год | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] календарный план на год |
- | [[Image:1236084776 kr.jpg|10x10px]] методические рекомендации | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] методические рекомендации |
- | [[Image:1236084776 kr.jpg|10x10px]] программы | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] программы |
- | [[Image:1236084776 kr.jpg|10x10px]] обсуждения | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] обсуждения |
| | | |
| | | |
Доказательство. Пусть ABCD — данный параллелограмм (рис. 122). Проведем диагонали параллелограмма. Пусть О — точка их пересечения.
Равенство противолежащих сторон АВ и CD следует из равенства треугольников АОВ и COD. У них углы при вершине О равны как вертикальные, а ОА = ОС и OB—OD по свойству диагоналей параллелограмма. Точно так же из равенства треугольников AOD и СОВ следует равенство другой пары противолежащих сторон — AD и ВС.
Равенство противолежащих углов ABC и CDA следует из равенства треугольников ABC и CD А (по трем сторонам). У них AB=CD и BC=DA по доказанному, а сторона АС общая. Точно так же равенство противолежащих углов BCD и DAB следует из равенства треугольников BCD и DAB. Теорема доказана полностью.
Решение. Пусть ABCD — данный четырехугольник, у которого стороны АВ и CD параллельны и равны (рис. 123). Проведем через вершину В прямую b, параллельную стороне AD. Эта прямая пересекает луч DC в некоторой точке С1. Четырехугольник ABC1D есть параллелограмм. Так как у параллелограмма противолежащие стороны равны, то C1D=AB. А по условию АВ = =CD. Значит, DC=DC1. Отсюда следует, что точки С и C1 совпадают.
Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум.