KNOWLEDGE HYPERMARKET


Расположение прямой относительно системы координат
(Создана новая страница размером <metakeywords>Гипермаркет Знаний - первый в мире!, Гипермаркет Знаний, Математика, ...)
 
Строка 1: Строка 1:
-
<metakeywords>Гипермаркет Знаний - первый в мире!, Гипермаркет Знаний, Математика, 8 класс, Алгебра, урок, на Тему, Расположение прямой относительно системы координат</metakeywords>  
+
<metakeywords>Гипермаркет Знаний - первый в мире!, Гипермаркет Знаний, Математика, 8 класс, Алгебра, урок, на Тему, Расположение прямой относительно системы координат, уравнение, точки, координаты</metakeywords>  
'''[[Гипермаркет знаний - первый в мире!|Гипермаркет знаний]]&gt;&gt;[[Математика|Математика]]&gt;&gt;[[Математика 8 класс|Математика 8 класс]]&gt;&gt;Математика: Расположение прямой относительно системы координат'''  
'''[[Гипермаркет знаний - первый в мире!|Гипермаркет знаний]]&gt;&gt;[[Математика|Математика]]&gt;&gt;[[Математика 8 класс|Математика 8 класс]]&gt;&gt;Математика: Расположение прямой относительно системы координат'''  
Строка 5: Строка 5:
<br>  
<br>  
-
'''&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; РАСПОЛОЖЕНИЕ ПРЯМОЙ ОТНОСИТЕЛЬНО СИСТЕМЫ КООРДИНАТ'''
+
'''Расположение прямой относительно системы координат'''  
-
<br>Выясним, как расположена прямая относительно осей координат, если ее уравнение ах + by + с = 0 имеет тот или иной частный вид.<br>1. а = 0, b[[Image:22-06-97.jpg]] 0. В этом случае уравнение прямой можно переписать так:
+
<br>Выясним, как расположена прямая относительно осей координат, если ее [[Уравнение прямой|уравнение]] ах + by + с = 0 имеет тот или иной частный вид.
-
[[Image:22-06-110.jpg]]<br>&nbsp;<br>Таким образом, все точки прямой имеют одну и ту же ординату [[Image:22-06-111.jpg]]; следовательно, прямая параллельна оси х (рис. 177, с).<br>В частности, если с = 0, то прямая совпадает с осью х.
+
1. а = 0, b[[Image:22-06-97.jpg]] 0. В этом случае уравнение прямой можно переписать так:
-
2.b = 0, a[[Image:22-06-97.jpg]] 0. Этот случай рассматривается аналогично. Прямая параллельна оси у (рис. 177, б) и совпадает с ней, если и c=0.
+
[[Image:22-06-110.jpg|Уравнение]] <br>Таким образом, все [[Точки і прямі, їх властивості. Закриті вправи|точки]] прямой имеют одну и ту же ординату [[Image:22-06-111.jpg|Ордината]]; следовательно, прямая параллельна оси х (рис. 177, с).
-
[[Image:22-06-112.jpg]]<br><br>3. с = 0. Прямая проходит через начало координат, так как его координаты (0; 0) удовлетворяют уравнению прямой (рис. 177, в).
+
В частности, если с = 0, то прямая совпадает с осью х.  
-
Задача (45). Составьте уравнение прямой, которая параллельна оси х и проходит через точку (2; —3).
+
2.b = 0, a[[Image:22-06-97.jpg]] 0. Этот случай рассматривается аналогично. Прямая параллельна оси у (рис. 177, б) и совпадает с ней, если и c=0.  
-
Решение. Так как прямая параллельна оси х, то она имеет уравнение вида
+
[[Image:22-06-112.jpg|480px|Расположение прямой относительно системы координат]]<br><br>3. с = 0. Прямая проходит через начало координат, так как его [[Координаты середины отрезка|координаты]] (0; 0) удовлетворяют уравнению прямой (рис. 177, в).
-
y + с=0.
+
'''Задача (45)'''. Составьте уравнение прямой, которая параллельна оси х и проходит через точку (2; —3).  
-
Так как точка (2; — 3) лежит на прямой, то ее координаты удовлетворяют этому уравнению: —3 + с = 0. Отсюда с = 3.
+
'''Решение.''' Так как прямая параллельна оси х, то она имеет уравнение вида
-
Следовательно, уравнение прямой
+
y + с=0.
 +
 
 +
Так как точка (2; — 3) лежит на прямой, то ее координаты удовлетворяют этому уравнению: —3 + с = 0. Отсюда с = 3.
 +
 
 +
Следовательно, уравнение прямой  
 +
 
 +
y + 3 = 0.&nbsp;
 +
 
 +
<br> ''А. В. Погорелов, [http://xvatit.com/vuzi/ Геометрия] для 7-11 классов, Учебник для общеобразовательных учреждений'' <br>
-
y + 3 = 0.<br>&nbsp;
 
-
<br> ''А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений'' <br>
 
<sub>Школьная библиотека [[Гипермаркет знаний - первый в мире!|онлайн]], учебники и книги по всему предметам, Математика 8 класс [[Математика|скачать]]</sub>  
<sub>Школьная библиотека [[Гипермаркет знаний - первый в мире!|онлайн]], учебники и книги по всему предметам, Математика 8 класс [[Математика|скачать]]</sub>  
Строка 34: Строка 40:
  '''<u>Содержание урока</u>'''
  '''<u>Содержание урока</u>'''
-
  <u></u>'''[[Image:1236084776 kr.jpg|10x10px]] конспект урока                      '''
+
  <u></u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] конспект урока                      '''
-
  [[Image:1236084776 kr.jpg|10x10px]] опорный каркас   
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] опорный каркас   
-
  [[Image:1236084776 kr.jpg|10x10px]] презентация урока
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] презентация урока
-
  [[Image:1236084776 kr.jpg|10x10px]] акселеративные методы  
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] акселеративные методы  
-
  [[Image:1236084776 kr.jpg|10x10px]] интерактивные технологии  
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] интерактивные технологии  
   
   
  '''<u>Практика</u>'''
  '''<u>Практика</u>'''
-
  [[Image:1236084776 kr.jpg|10x10px]] задачи и упражнения  
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] задачи и упражнения  
-
  [[Image:1236084776 kr.jpg|10x10px]] самопроверка
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] самопроверка
-
  [[Image:1236084776 kr.jpg|10x10px]] практикумы, тренинги, кейсы, квесты
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] практикумы, тренинги, кейсы, квесты
-
  [[Image:1236084776 kr.jpg|10x10px]] домашние задания
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] домашние задания
-
  [[Image:1236084776 kr.jpg|10x10px]] дискуссионные вопросы
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] дискуссионные вопросы
-
  [[Image:1236084776 kr.jpg|10x10px]] риторические вопросы от учеников
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] риторические вопросы от учеников
-
 
+
  '''<u>Иллюстрации</u>'''
  '''<u>Иллюстрации</u>'''
-
  <u></u>'''[[Image:1236084776 kr.jpg|10x10px]] аудио-, видеоклипы и мультимедиа '''
+
  <u></u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] аудио-, видеоклипы и мультимедиа '''
-
  [[Image:1236084776 kr.jpg|10x10px]] фотографии, картинки  
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] фотографии, картинки  
-
  [[Image:1236084776 kr.jpg|10x10px]] графики, таблицы, схемы
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] графики, таблицы, схемы
-
  [[Image:1236084776 kr.jpg|10x10px]] юмор, анекдоты, приколы, комиксы
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] юмор, анекдоты, приколы, комиксы
-
  [[Image:1236084776 kr.jpg|10x10px]] притчи, поговорки, кроссворды, цитаты
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] притчи, поговорки, кроссворды, цитаты
   
   
  '''<u>Дополнения</u>'''
  '''<u>Дополнения</u>'''
-
  <u></u>'''[[Image:1236084776 kr.jpg|10x10px]] рефераты'''
+
  <u></u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] рефераты'''
-
  [[Image:1236084776 kr.jpg|10x10px]] статьи  
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] статьи  
-
  [[Image:1236084776 kr.jpg|10x10px]] фишки для любознательных  
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] фишки для любознательных  
-
  [[Image:1236084776 kr.jpg|10x10px]] шпаргалки  
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] шпаргалки  
-
  [[Image:1236084776 kr.jpg|10x10px]] учебники основные и дополнительные
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] учебники основные и дополнительные
-
  [[Image:1236084776 kr.jpg|10x10px]] словарь терминов                           
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] словарь терминов                           
-
  [[Image:1236084776 kr.jpg|10x10px]] прочие  
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] прочие  
  '''<u></u>'''
  '''<u></u>'''
  <u>Совершенствование учебников и уроков
  <u>Совершенствование учебников и уроков
-
  </u>'''[[Image:1236084776 kr.jpg|10x10px]] исправление ошибок в учебнике'''
+
  </u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] исправление ошибок в учебнике'''
-
  [[Image:1236084776 kr.jpg|10x10px]] обновление фрагмента в учебнике  
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] обновление фрагмента в учебнике  
-
  [[Image:1236084776 kr.jpg|10x10px]] элементы новаторства на уроке  
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] элементы новаторства на уроке  
-
  [[Image:1236084776 kr.jpg|10x10px]] замена устаревших знаний новыми  
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] замена устаревших знаний новыми  
-
 
+
  '''<u>Только для учителей</u>'''
  '''<u>Только для учителей</u>'''
-
  <u></u>'''[[Image:1236084776 kr.jpg|10x10px]] идеальные уроки '''
+
  <u></u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] идеальные уроки '''
-
  [[Image:1236084776 kr.jpg|10x10px]] календарный план на год   
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] календарный план на год   
-
  [[Image:1236084776 kr.jpg|10x10px]] методические рекомендации   
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] методические рекомендации   
-
  [[Image:1236084776 kr.jpg|10x10px]] программы
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] программы
-
  [[Image:1236084776 kr.jpg|10x10px]] обсуждения
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] обсуждения
   
   
   
   

Текущая версия на 11:59, 9 октября 2012

Гипермаркет знаний>>Математика>>Математика 8 класс>>Математика: Расположение прямой относительно системы координат


Расположение прямой относительно системы координат


Выясним, как расположена прямая относительно осей координат, если ее уравнение ах + by + с = 0 имеет тот или иной частный вид.

1. а = 0, b22-06-97.jpg 0. В этом случае уравнение прямой можно переписать так:

Уравнение
Таким образом, все точки прямой имеют одну и ту же ординату Ордината; следовательно, прямая параллельна оси х (рис. 177, с).

В частности, если с = 0, то прямая совпадает с осью х.

2.b = 0, a22-06-97.jpg 0. Этот случай рассматривается аналогично. Прямая параллельна оси у (рис. 177, б) и совпадает с ней, если и c=0.

Расположение прямой относительно системы координат

3. с = 0. Прямая проходит через начало координат, так как его координаты (0; 0) удовлетворяют уравнению прямой (рис. 177, в).

Задача (45). Составьте уравнение прямой, которая параллельна оси х и проходит через точку (2; —3).

Решение. Так как прямая параллельна оси х, то она имеет уравнение вида

y + с=0.

Так как точка (2; — 3) лежит на прямой, то ее координаты удовлетворяют этому уравнению: —3 + с = 0. Отсюда с = 3.

Следовательно, уравнение прямой

y + 3 = 0. 


А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений


Школьная библиотека онлайн, учебники и книги по всему предметам, Математика 8 класс скачать


Содержание урока
1236084776 kr.jpg конспект урока                       
1236084776 kr.jpg опорный каркас  
1236084776 kr.jpg презентация урока
1236084776 kr.jpg акселеративные методы 
1236084776 kr.jpg интерактивные технологии 

Практика
1236084776 kr.jpg задачи и упражнения 
1236084776 kr.jpg самопроверка
1236084776 kr.jpg практикумы, тренинги, кейсы, квесты
1236084776 kr.jpg домашние задания
1236084776 kr.jpg дискуссионные вопросы
1236084776 kr.jpg риторические вопросы от учеников

Иллюстрации
1236084776 kr.jpg аудио-, видеоклипы и мультимедиа 
1236084776 kr.jpg фотографии, картинки 
1236084776 kr.jpg графики, таблицы, схемы
1236084776 kr.jpg юмор, анекдоты, приколы, комиксы
1236084776 kr.jpg притчи, поговорки, кроссворды, цитаты

Дополнения
1236084776 kr.jpg рефераты
1236084776 kr.jpg статьи 
1236084776 kr.jpg фишки для любознательных 
1236084776 kr.jpg шпаргалки 
1236084776 kr.jpg учебники основные и дополнительные
1236084776 kr.jpg словарь терминов                          
1236084776 kr.jpg прочие 

Совершенствование учебников и уроков
1236084776 kr.jpg исправление ошибок в учебнике
1236084776 kr.jpg обновление фрагмента в учебнике 
1236084776 kr.jpg элементы новаторства на уроке 
1236084776 kr.jpg замена устаревших знаний новыми 

Только для учителей
1236084776 kr.jpg идеальные уроки 
1236084776 kr.jpg календарный план на год  
1236084776 kr.jpg методические рекомендации  
1236084776 kr.jpg программы
1236084776 kr.jpg обсуждения


Интегрированные уроки


Если у вас есть исправления или предложения к данному уроку, напишите нам.

Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум.