|   |   | 
| Строка 1: | Строка 1: | 
| - | <metakeywords>Гипермаркет Знаний - первый в мире!, Гипермаркет Знаний, Математика, 8 класс, Алгебра, урок, на Тему, Симметрия относительно точки</metakeywords>   | + | <metakeywords>Гипермаркет Знаний - первый в мире!, Гипермаркет Знаний, Математика, 8 класс, Алгебра, урок, на Тему, Симметрия относительно точки, точка, симметричная, фигуры, треугольники</metakeywords>   | 
|  |  |  |  | 
|  | '''[[Гипермаркет знаний - первый в мире!|Гипермаркет знаний]]>>[[Математика|Математика]]>>[[Математика 8 класс|Математика 8 класс]]>>Математика: Симметрия относительно точки'''   |  | '''[[Гипермаркет знаний - первый в мире!|Гипермаркет знаний]]>>[[Математика|Математика]]>>[[Математика 8 класс|Математика 8 класс]]>>Математика: Симметрия относительно точки'''   | 
| Строка 5: | Строка 5: | 
|  | <br>   |  | <br>   | 
|  |  |  |  | 
| - |                                         '''СИММЕТРИЯ ОТНОСИТЕЛЬНО ТОЧКИ'''<br>
 | + | '''Симметрия относительно точки'''<br>   | 
|  |  |  |  | 
| - | <br>Пусть О — фиксированная точка и X — произвольная точка плоскости (рис. 187). Отложим на продолжении отрезка ОХ за точку О отрезок ОХ', равный ОХ.   | + | <br>Пусть О — фиксированная [[Точка и прямая|точка]] и X — произвольная точка плоскости (рис. 187). Отложим на продолжении отрезка ОХ за точку О отрезок ОХ', равный ОХ.   | 
|  |  |  |  | 
| - | Точка X' называется симметричной точке X относительно точки О. Точка, симметричная точке О, есть сама точка О. Очевидно, что точка, симметричная точке X', есть точка X.<br> | + | Точка X' называется симметричной точке X относительно точки О. Точка, [[Презентація уроку: Симетрія відносно точки. Симетрія відносно прямої|симметричная]] точке О, есть сама точка О. Очевидно, что точка, симметричная точке X', есть точка X.<br>   | 
|  |  |  |  | 
| - | Преобразование фигуры F в фигуру F', при котором каждая ее точка X переходит в точку X', симметричную относительно данной точки О, называется '''''преобразованием симметрии относительно точки О'''''. При этом фигуры F и F' называются'''''симметричными относительно точки О''''' (рис. 188).<br> | + | Преобразование фигуры F в фигуру F', при котором каждая ее точка X переходит в точку X', симметричную относительно данной точки О, называется преобразованием симметрии относительно точки О. При этом [[Геометрические фигуры|фигуры]] F и F' называются симметричными относительно точки О (рис. 188).<br>   | 
|  |  |  |  | 
| - | <br> | + | [[Image:22-06-139.jpg|480px|Симметрия относительно точки]]<br>   | 
|  |  |  |  | 
| - | [[Image:22-06-139.jpg]]<br>
 | + | Если преобразование симметрии относительно точки О переводит фигуру F в себя, то она называется центрально-симметричной, а точка О называется центром симметрии.<br>   | 
|  |  |  |  | 
| - | <br> | + | Например, параллелограмм является центрально-симметричной фигурой. Его центром симметрии является точка пересечения диагоналей (рис. 189).<br><br>[[Image:22-06-140.jpg|480px|Симметрия относительно точки]]<br>  <br>'''Теорема 9.2. '''Преобразование симметрии относительно точки является движением.<br>   | 
|  |  |  |  | 
| - | Если преобразование симметрии относительно точки О переводит фигуру F в себя, то она называется '''''центрально-симметричной''''', а точка Оназывается '''''центром симметрии.'''''<br>
 | + | '''Доказательство'''. Пусть X и Y — две произвольные точки фигуры F (рис. 190). Преобразование симметрии относительно точки О переводит их в точки X' и У. <br>   | 
|  |  |  |  | 
| - | Например, параллелограмм является центрально-симметричной фигурой. Его центром симметрии является точка пересечения диагоналей (рис. 189).<br><br>[[Image:22-06-140.jpg]]<br>  <br>Теорема 9.2. '''''Преобразование симметрии относительно точкиявляется движением.'''''<br>
 | + | Рассмотрим треугольники XOY и X'OY'. Эти [[Треугольник. Полные уроки|треугольники]] равны по первому признаку равенства треугольников. У них углы при вершине О равны как вертикальные, а ОХ=ОХ', OY=OY' по определению симметрии относительно точки О. Из равенства треугольников следует равенство сторон: XY=X'Y'. А это значит, что симметрия относительно точки О есть движение. Теорема доказана.  | 
|  |  |  |  | 
| - | Доказательство.Пусть X и Y — две произвольные точки фигуры F (рис.190).Преобразование симметрии относительно точки О переводит их в точки X'и У. <br>
 | + | <br> ''А. В. Погорелов, [http://xvatit.com/vuzi/ Геометрия] для 7-11 классов, Учебник для общеобразовательных учреждений'' <br>   | 
|  |  |  |  | 
| - | Рассмотрим треугольники XOY и X'OY'. Эти треугольники равны по первому признаку равенства треугольников. У них углы при вершине О равны как вертикальные, а ОХ=ОХ', OY=OY' по определению симметрии относительно точки О. Из равенства треугольников следует равенство сторон: XY=X'Y'. А это значит, что симметрия относительно точки О есть движение. Теорема доказана.<br><br> 
 |  | 
|  |  |  |  | 
| - | <br> ''А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений'' <br> 
 |  | 
|  |  |  |  | 
|  | <sub>Математика [[Математика|скачать]], задача школьнику 8 класса, материалы по математике для 8 класса [[Гипермаркет знаний - первый в мире!|онлайн]]</sub>   |  | <sub>Математика [[Математика|скачать]], задача школьнику 8 класса, материалы по математике для 8 класса [[Гипермаркет знаний - первый в мире!|онлайн]]</sub>   | 
| Строка 34: | Строка 32: | 
|  |  |  |  | 
|  |   '''<u>Содержание урока</u>''' |  |   '''<u>Содержание урока</u>''' | 
| - |   <u></u>'''[[Image:1236084776 kr.jpg|10x10px]] конспект урока                       ''' | + |   <u></u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] конспект урока                       ''' | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] опорный каркас    | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] опорный каркас    | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] презентация урока | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] презентация урока | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] акселеративные методы   | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] акселеративные методы   | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] интерактивные технологии   | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] интерактивные технологии   | 
|  |     |  |     | 
|  |   '''<u>Практика</u>''' |  |   '''<u>Практика</u>''' | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] задачи и упражнения   | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] задачи и упражнения   | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] самопроверка | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] самопроверка | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] практикумы, тренинги, кейсы, квесты | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] практикумы, тренинги, кейсы, квесты | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] домашние задания | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] домашние задания | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] дискуссионные вопросы | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] дискуссионные вопросы | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] риторические вопросы от учеников | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] риторические вопросы от учеников | 
| - |   
 | + |   | 
|  |   '''<u>Иллюстрации</u>''' |  |   '''<u>Иллюстрации</u>''' | 
| - |   <u></u>'''[[Image:1236084776 kr.jpg|10x10px]] аудио-, видеоклипы и мультимедиа ''' | + |   <u></u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] аудио-, видеоклипы и мультимедиа ''' | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] фотографии, картинки   | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] фотографии, картинки   | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] графики, таблицы, схемы | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] графики, таблицы, схемы | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] юмор, анекдоты, приколы, комиксы | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] юмор, анекдоты, приколы, комиксы | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] притчи, поговорки, кроссворды, цитаты | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] притчи, поговорки, кроссворды, цитаты | 
|  |     |  |     | 
|  |   '''<u>Дополнения</u>''' |  |   '''<u>Дополнения</u>''' | 
| - |   <u></u>'''[[Image:1236084776 kr.jpg|10x10px]] рефераты''' | + |   <u></u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] рефераты''' | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] статьи   | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] статьи   | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] фишки для любознательных   | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] фишки для любознательных   | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] шпаргалки   | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] шпаргалки   | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] учебники основные и дополнительные | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] учебники основные и дополнительные | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] словарь терминов                            | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] словарь терминов                            | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] прочие   | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] прочие   | 
|  |   '''<u></u>''' |  |   '''<u></u>''' | 
|  |   <u>Совершенствование учебников и уроков |  |   <u>Совершенствование учебников и уроков | 
| - |   </u>'''[[Image:1236084776 kr.jpg|10x10px]] исправление ошибок в учебнике''' | + |   </u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] исправление ошибок в учебнике''' | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] обновление фрагмента в учебнике   | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] обновление фрагмента в учебнике   | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] элементы новаторства на уроке   | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] элементы новаторства на уроке   | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] замена устаревших знаний новыми   | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] замена устаревших знаний новыми   | 
| - |   
 | + |   | 
|  |   '''<u>Только для учителей</u>''' |  |   '''<u>Только для учителей</u>''' | 
| - |   <u></u>'''[[Image:1236084776 kr.jpg|10x10px]] идеальные уроки ''' | + |   <u></u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] идеальные уроки ''' | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] календарный план на год    | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] календарный план на год    | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] методические рекомендации    | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] методические рекомендации    | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] программы | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] программы | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] обсуждения | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] обсуждения | 
|  |     |  |     | 
|  |     |  |     | 
Преобразование фигуры F в фигуру F', при котором каждая ее точка X переходит в точку X', симметричную относительно данной точки О, называется преобразованием симметрии относительно точки О. При этом фигуры F и F' называются симметричными относительно точки О (рис. 188).
 
Если преобразование симметрии относительно точки О переводит фигуру F в себя, то она называется центрально-симметричной, а точка О называется центром симметрии.
 
Например, параллелограмм является центрально-симметричной фигурой. Его центром симметрии является точка пересечения диагоналей (рис. 189).

  
Теорема 9.2. Преобразование симметрии относительно точки является движением.
 
Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум.