| 
 
 
			
			
			
			
		
		|  |   |  | (1 промежуточная версия не показана) |  | Строка 1: | Строка 1: |  | - | '''[[Гипермаркет знаний - первый в мире!|Гипермаркет знаний]]>>[[Математика|Математика]]>>[[Математика 9 класс|Математика 9 класс]]>>Математика: Тригонометрические функции углового аргумента<metakeywords>Тригонометрические функции углового аргумента</metakeywords>'''   | + | '''[[Гипермаркет знаний - первый в мире!|Гипермаркет знаний]]>>[[Математика|Математика]]>>[[Математика 9 класс|Математика 9 класс]]>>Математика: Тригонометрические функции углового аргумента<metakeywords>Тригонометрические функции углового аргумента? косинус, синуса, окружностью, сантиметры, аргументом, прямоугольный треугольник</metakeywords>'''   |  |  | + | <br> |  |  |  |  |  |  | - | ТРИГОНОМЕТРИЧЕСКАЯ ФУНКЦИЯ УГЛОВОГО АРГУМЕНТА<br>Термины «синус», «косинус», «тангенс» и «котангенс» на самом деле были вам знакомы, правда, использовали вы их до сих пор в несколько иной интерпретации: в геометрии и в физике рассматривали синус, косинус, тангенс и котангенс у г л а (а не числа, как это было в предыдущих параграфах).<br>Из геометрии известно, что синус (косинус) острого угла — это отношение катета прямоугольного треугольника к его гипотенузе, а тангенс (котангенс) угла — это отношение катетов прямоугольного треугольника. Иной подход к понятиям синуса, косинуса, тангенса и котангенса развивали мы в предыдущих параграфах. На самом деле эти подходы взаимосвязаны, в чем мы сейчас убедимся.<br>Возьмем угол с градусной мерой <х° и расположим его в модели «числовая окружность в прямоугольной системе координат» так, как показано на рис. 112: вершину угла совместим с центром окружности (с началом системы координат), а одну сторону угла совместим с положительным лучом оси абсцисс. Точку пересечения второй стороны угла с окружностью обозначим буквой М. Ординату точки М естественно считать синусом угла а°, а абсциссу этой точки — косинусом угла а°.
 | + | '''Тригонометрические функции углового аргумента'''<br> |  |  |  |  |  |  | - | [[Image:alg51.jpg]]<br>Для отыскания синуса или косинуса углаа° совсем необязательно каждый раз делать указанные весьма сложные построения. Достаточно заметить,что дуга АМ составляет такую же<br>часть длины числовой окружности, какую угол а составляет от угла 360°. Если длину дуги АМ обозначить буквой то получим: | + | <br>Термины «синус», «[[Косинус угла. Полные уроки|косинус]]», «тангенс» и «котангенс» на самом деле были вам знакомы, правда, использовали вы их до сих пор в несколько иной интерпретации: в геометрии и в физике рассматривали синус, косинус, тангенс и котангенс угла (а не числа, как это было в предыдущих параграфах).<br> |  |  |  |  |  |  | - | [[Image:alg52.jpg]]<br>Считают, что 30° — это градусная мера угла, а  | + | Из геометрии известно, что синус (косинус) острого угла — это отношение катета прямоугольного треугольника к его гипотенузе, а тангенс (котангенс) угла — это отношение катетов прямоугольного треугольника. Иной подход к понятиям [[4. Синус и косинус|синуса]], косинуса, тангенса и котангенса развивали мы в предыдущих параграфах. На самом деле эти подходы взаимосвязаны, в чем мы сейчас убедимся.<br> |  |  |  |  |  |  | - | [[Image:alg53.jpg]]<br>Ради краткости условились обозначение «рад» опускать,т.е. вполне допустимой является следующая запись:
 | + | Возьмем угол с градусной мерой <х° и расположим его в модели «числовая окружность в прямоугольной системе координат» так, как показано на рис. 112: вершину угла совместим с центром окружности (с началом системы координат), а одну сторону угла совместим с положительным лучом оси абсцисс. Точку пересечения второй стороны угла с [[Окружность и круг|окружностью]] обозначим буквой М. Ординату точки М естественно считать синусом угла а°, а абсциссу этой точки — косинусом угла а°.   |  |  |  |  |  |  | - | [[Image:alg54.jpg]]<br>Так что же такое 1 радиан? Вы знаете, что есть различные меры длин отрезков: сантиметры, метры, ярды и т.д. Есть и различные меры для обозначения величин углов. Мы рассматриваем центральные углы единичной окружности. Угол в 1° — это центральный угол, опирающийся на дугу, составляющую  [[Image:alg55.jpg]] часть окружности. Угол в 1 радиан — 360 это центральный угол, опирающийся на дугу длиной 1, т.е. на дугу, длина которой равна радиусу 180° окружности. Из формулы [[Image:alg56.jpg]] получаем, 1 рад : что 1 рад = 57,3°.<br>Рассматривая функцию u = sin t (или любую другую тригонометрическую функцию), мы можем считать независимую переменную t числовым аргументом, как это было в предыдущих параграфах, но можем считать эту переменную и мерой угла, т.е. угловым аргументом. Поэтому, говоря о тригонометрической функции, в определенном смысле безразлично считать ее функцией числового или углового аргумента.<br>Завершая этот параграф, убедимся в том, что определения синуса, косинуса, тангенса и котангенса, которые вы изучали в геометрии, представляют собой частные случаи тех определений, что были предложены в этой главе. | + | [[Image:Alg51.jpg|240px|Числовая окружность]]<br> |  |  |  |  |  |  | - | [[Image:alg57.jpg]]<br>Доказательство. Совместим прямоугольный треугольник АВС с числовой окружностью так, как показано на рис. 114: вершину А поместим в центр окружности, катет АС «пустим» по положительному направлению оси абсцисс. Точку пересечения гипотенузы АВ с окружностью обозначим буквой М. Опустим из точки М перпендикуляр МР на прямую АС. Заметим, что АР и МР — абсцисса и ордината точки М, т.е. АР = соз А, МР = зш А. Учтем также, что АМ= 1 (радиус числовой окружностиравен 1) и что АВ = с,АС = Ь, ВС = а.<br>Так как треугольники АМР и АВС подобны, то
 | + | Для отыскания синуса или косинуса угла а° совсем не обязательно каждый раз делать указанные весьма сложные построения. Достаточно заметить, что дуга АМ составляет такую же часть длины числовой окружности, какую угол а составляет от угла 360°. Если длину дуги АМ обозначить буквой то получим:  |  |  |  |  |  |  | - | [[Image:alg58.jpg]]<br>Теорема полностью доказана. | + | [[Image:Alg52.jpg|420px|Решение]]<br>Считают, что 30° — это градусная мера угла, а  |  |  |  |  |  |  |  | + | [[Image:Alg53.jpg|420px|Решение]]<br>Ради краткости условились обозначение «рад» опускать, т.е. вполне допустимой является следующая запись:  |  |  |  |  |  |  |  | + | [[Image:Alg54.jpg|240px|Решение]]<br>Так что же такое 1 радиан? Вы знаете, что есть различные меры длин отрезков: [[Вимірювання довжини відрізків у сантиметрах та дециметрах і сантиметрах|сантиметры]], метры, ярды и т.д. Есть и различные меры для обозначения величин углов. Мы рассматриваем центральные углы единичной окружности. Угол в 1° — это центральный угол, опирающийся на дугу, составляющую  часть окружности. Угол в 1 радиан — 360 это центральный угол, опирающийся на дугу длиной 1, т.е. на дугу, длина которой равна радиусу 180° окружности. Из формулы  получаем, 1 рад : что 1 рад = 57,3°. |  |  |  |  |  |  | - | А.Г. Мордкович Алгебра 9 класс   | + | Рассматривая функцию u = sin t (или любую другую тригонометрическую функцию), мы можем считать независимую переменную t числовым аргументом, как это было в предыдущих параграфах, но можем считать эту переменную и мерой угла, т.е. угловым [[Тригонометрические функции числового аргумента|аргументом]]. Поэтому, говоря о тригонометрической функции, в определенном смысле безразлично считать ее функцией числового или углового аргумента. |  |  | + |   |  |  | + | Завершая этот параграф, убедимся в том, что определения синуса, косинуса, тангенса и котангенса, которые вы изучали в геометрии, представляют собой частные случаи тех определений, что были предложены в этой главе.  |  |  | + |   |  |  | + | [[Image:Alg57.jpg|480px|Теорема]]<br>Доказательство. Совместим [[Співвідношення між сторонами і кутами прямокутного трикутника|прямоугольный треугольник]] АВС с числовой окружностью так, как показано на рис. 114: вершину А поместим в центр окружности, катет АС «пустим» по положительному направлению оси абсцисс. Точку пересечения гипотенузы АВ с окружностью обозначим буквой М. Опустим из точки М перпендикуляр МР на прямую АС. Заметим, что АР и МР — абсцисса и ордината точки М, т.е. АР = соs А, МР = sin А. Учтем также, что АМ = 1 (радиус числовой окружности равен 1) и что АВ = с, АС = b, ВС = а. |  |  | + |   |  |  | + | Так как треугольники АМР и АВС подобны, то  |  |  | + |   |  |  | + | [[Image:Alg58.jpg|480px|Теорема]]<br>Теорема полностью доказана.<br>  |  |  | + |   |  |  | + |   |  |  | + |   |  |  | + | ''А.Г. Мордкович [http://xvatit.com/vuzi/ Алгебра] 9 класс'' |  |  |  |  |  |  |  | <br>   |  | <br>   |  | Строка 24: | Строка 39: |  |  |  |  |  |  |  |   '''<u>Содержание урока</u>''' |  |   '''<u>Содержание урока</u>''' |  | - |   '''[[Image:1236084776 kr.jpg|10x10px]] конспект урока                       ''' | + |   '''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] конспект урока                       ''' |  | - |   [[Image:1236084776 kr.jpg|10x10px]] опорный каркас    | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] опорный каркас    |  | - |   [[Image:1236084776 kr.jpg|10x10px]] презентация урока | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] презентация урока |  | - |   [[Image:1236084776 kr.jpg|10x10px]] акселеративные методы   | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] акселеративные методы   |  | - |   [[Image:1236084776 kr.jpg|10x10px]] интерактивные технологии   | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] интерактивные технологии   |  |  |     |  |     |  |  |   '''<u>Практика</u>''' |  |   '''<u>Практика</u>''' |  | - |   [[Image:1236084776 kr.jpg|10x10px]] задачи и упражнения   | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] задачи и упражнения   |  | - |   [[Image:1236084776 kr.jpg|10x10px]] самопроверка | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] самопроверка |  | - |   [[Image:1236084776 kr.jpg|10x10px]] практикумы, тренинги, кейсы, квесты | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] практикумы, тренинги, кейсы, квесты |  | - |   [[Image:1236084776 kr.jpg|10x10px]] домашние задания | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] домашние задания |  | - |   [[Image:1236084776 kr.jpg|10x10px]] дискуссионные вопросы | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] дискуссионные вопросы |  | - |   [[Image:1236084776 kr.jpg|10x10px]] риторические вопросы от учеников | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] риторические вопросы от учеников |  | - |   
 | + |   |  |  |   '''<u>Иллюстрации</u>''' |  |   '''<u>Иллюстрации</u>''' |  | - |   '''[[Image:1236084776 kr.jpg|10x10px]] аудио-, видеоклипы и мультимедиа ''' | + |   '''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] аудио-, видеоклипы и мультимедиа ''' |  | - |   [[Image:1236084776 kr.jpg|10x10px]] фотографии, картинки   | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] фотографии, картинки   |  | - |   [[Image:1236084776 kr.jpg|10x10px]] графики, таблицы, схемы | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] графики, таблицы, схемы |  | - |   [[Image:1236084776 kr.jpg|10x10px]] юмор, анекдоты, приколы, комиксы | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] юмор, анекдоты, приколы, комиксы |  | - |   [[Image:1236084776 kr.jpg|10x10px]] притчи, поговорки, кроссворды, цитаты | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] притчи, поговорки, кроссворды, цитаты |  |  |     |  |     |  |  |   '''<u>Дополнения</u>''' |  |   '''<u>Дополнения</u>''' |  | - |   '''[[Image:1236084776 kr.jpg|10x10px]] рефераты''' | + |   '''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] рефераты''' |  | - |   [[Image:1236084776 kr.jpg|10x10px]] статьи   | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] статьи   |  | - |   [[Image:1236084776 kr.jpg|10x10px]] фишки для любознательных   | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] фишки для любознательных   |  | - |   [[Image:1236084776 kr.jpg|10x10px]] шпаргалки   | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] шпаргалки   |  | - |   [[Image:1236084776 kr.jpg|10x10px]] учебники основные и дополнительные | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] учебники основные и дополнительные |  | - |   [[Image:1236084776 kr.jpg|10x10px]] словарь терминов                            | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] словарь терминов                            |  | - |   [[Image:1236084776 kr.jpg|10x10px]] прочие   | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] прочие   |  |  |     |  |     |  |  |   <u>Совершенствование учебников и уроков |  |   <u>Совершенствование учебников и уроков |  | - |   </u>'''[[Image:1236084776 kr.jpg|10x10px]] исправление ошибок в учебнике''' | + |   </u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] исправление ошибок в учебнике''' |  | - |   [[Image:1236084776 kr.jpg|10x10px]] обновление фрагмента в учебнике   | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] обновление фрагмента в учебнике   |  | - |   [[Image:1236084776 kr.jpg|10x10px]] элементы новаторства на уроке   | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] элементы новаторства на уроке   |  | - |   [[Image:1236084776 kr.jpg|10x10px]] замена устаревших знаний новыми   | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] замена устаревших знаний новыми   |  | - |   
 | + |   |  |  |   '''<u>Только для учителей</u>''' |  |   '''<u>Только для учителей</u>''' |  | - |   '''[[Image:1236084776 kr.jpg|10x10px]] идеальные уроки ''' | + |   '''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] идеальные уроки ''' |  | - |   [[Image:1236084776 kr.jpg|10x10px]] календарный план на год    | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] календарный план на год    |  | - |   [[Image:1236084776 kr.jpg|10x10px]] методические рекомендации    | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] методические рекомендации    |  | - |   [[Image:1236084776 kr.jpg|10x10px]] программы | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] программы |  | - |   [[Image:1236084776 kr.jpg|10x10px]] обсуждения | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] обсуждения |  |  |     |  |     |  |  |     |  |     |  
 Текущая версия на 19:16, 10 октября 2012Гипермаркет знаний>>Математика>>Математика 9 класс>>Математика: Тригонометрические функции углового аргумента 
 Тригонометрические функции углового аргумента
 Термины «синус», «косинус», «тангенс» и «котангенс» на самом деле были вам знакомы, правда, использовали вы их до сих пор в несколько иной интерпретации: в геометрии и в физике рассматривали синус, косинус, тангенс и котангенс угла (а не числа, как это было в предыдущих параграфах).
 
 Из геометрии известно, что синус (косинус) острого угла — это отношение катета прямоугольного треугольника к его гипотенузе, а тангенс (котангенс) угла — это отношение катетов прямоугольного треугольника. Иной подход к понятиям синуса, косинуса, тангенса и котангенса развивали мы в предыдущих параграфах. На самом деле эти подходы взаимосвязаны, в чем мы сейчас убедимся.
 Возьмем угол с градусной мерой <х° и расположим его в модели «числовая окружность в прямоугольной системе координат» так, как показано на рис. 112: вершину угла совместим с центром окружности (с началом системы координат), а одну сторону угла совместим с положительным лучом оси абсцисс. Точку пересечения второй стороны угла с окружностью обозначим буквой М. Ординату точки М естественно считать синусом угла а°, а абсциссу этой точки — косинусом угла а°. 
  
 Для отыскания синуса или косинуса угла а° совсем не обязательно каждый раз делать указанные весьма сложные построения. Достаточно заметить, что дуга АМ составляет такую же часть длины числовой окружности, какую угол а составляет от угла 360°. Если длину дуги АМ обозначить буквой то получим: 
  Считают, что 30° — это градусная мера угла, а
  Ради краткости условились обозначение «рад» опускать, т.е. вполне допустимой является следующая запись:
  Так что же такое 1 радиан? Вы знаете, что есть различные меры длин отрезков: сантиметры, метры, ярды и т.д. Есть и различные меры для обозначения величин углов. Мы рассматриваем центральные углы единичной окружности. Угол в 1° — это центральный угол, опирающийся на дугу, составляющую  часть окружности. Угол в 1 радиан — 360 это центральный угол, опирающийся на дугу длиной 1, т.е. на дугу, длина которой равна радиусу 180° окружности. Из формулы  получаем, 1 рад : что 1 рад = 57,3°.
 Рассматривая функцию u = sin t (или любую другую тригонометрическую функцию), мы можем считать независимую переменную t числовым аргументом, как это было в предыдущих параграфах, но можем считать эту переменную и мерой угла, т.е. угловым аргументом. Поэтому, говоря о тригонометрической функции, в определенном смысле безразлично считать ее функцией числового или углового аргумента.
 Завершая этот параграф, убедимся в том, что определения синуса, косинуса, тангенса и котангенса, которые вы изучали в геометрии, представляют собой частные случаи тех определений, что были предложены в этой главе. 
  Доказательство. Совместим прямоугольный треугольник АВС с числовой окружностью так, как показано на рис. 114: вершину А поместим в центр окружности, катет АС «пустим» по положительному направлению оси абсцисс. Точку пересечения гипотенузы АВ с окружностью обозначим буквой М. Опустим из точки М перпендикуляр МР на прямую АС. Заметим, что АР и МР — абсцисса и ордината точки М, т.е. АР = соs А, МР = sin А. Учтем также, что АМ = 1 (радиус числовой окружности равен 1) и что АВ = с, АС = b, ВС = а.
 Так как треугольники АМР и АВС подобны, то 
  Теорема полностью доказана.
 
 
 А.Г. Мордкович Алгебра 9 класс
 
 Материалы по математике онлайн, задачи и ответы по классам, планы конспектов уроков по математике скачать 
 Содержание урока
 конспект урока  опорный каркас  презентация урока  акселеративные методы  интерактивные технологии 
Практика  задачи и упражнения  самопроверка  практикумы, тренинги, кейсы, квесты  домашние задания  дискуссионные вопросы  риторические вопросы от учеников
Иллюстрации  аудио-, видеоклипы и мультимедиа  фотографии, картинки  графики, таблицы, схемы  юмор, анекдоты, приколы, комиксы  притчи, поговорки, кроссворды, цитаты
Дополнения  рефераты  статьи  фишки для любознательных  шпаргалки  учебники основные и дополнительные  словарь терминов  прочие 
Совершенствование учебников и уроков  исправление ошибок в учебнике  обновление фрагмента в учебнике  элементы новаторства на уроке  замена устаревших знаний новыми 
Только для учителей  идеальные уроки  календарный план на год  методические рекомендации  программы  обсуждения
Интегрированные уроки 
 Если у вас есть исправления или предложения к данному уроку, напишите нам. 
 Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум.
 
 
 
 |