| 
 
 
			
			
			
			
		
		|   |   |  | (2 промежуточные версии не показаны) |  | Строка 1: | Строка 1: |  | - | <metakeywords>Гипермаркет Знаний - первый в мире!, Гипермаркет Знаний, Математика, 9 класс, Алгебра, урок, на Тему, Подобие правильных выпуклых многоугольников</metakeywords> | + | <metakeywords>Гипермаркет Знаний - первый в мире!, Гипермаркет Знаний, Математика, 9 класс, Геометрия, урок, на Тему, Подобие правильных выпуклых многоугольников, теоремы, Треугольники, многоугольник, преобразованию подобия, коэффициент</metakeywords>   |  |  |  |  |  |  |  | '''[[Гипермаркет знаний - первый в мире!|Гипермаркет знаний]]>>[[Математика|Математика]]>>[[Математика 9 класс|Математика 9 класс]]>>Математика:Подобие правильных выпуклых многоугольников'''   |  | '''[[Гипермаркет знаний - первый в мире!|Гипермаркет знаний]]>>[[Математика|Математика]]>>[[Математика 9 класс|Математика 9 класс]]>>Математика:Подобие правильных выпуклых многоугольников'''   |  | Строка 5: | Строка 5: |  |  | <br>   |  | <br>   |  |  |  |  |  |  | - |                                               '''ПОДОБИЕ ПРАВИЛЬНЫХ ВЫПУКЛЫХ МНОГОУГОЛЬНИКОВ'''
 | + | '''Подобие правильных выпуклых многоугольников'''   |  |  |  |  |  |  | - | <br>Теорема 13.4. '''''Правильные выпуклыеп-угольники подобны. В частности, если у них стороны одинаковы, то они равны'''''. | + | '''<br>Теорема 13.4.''' Правильные выпуклые n-угольники подобны. В частности, если у них стороны одинаковы, то они равны.   |  |  |  |  |  |  | - | Доказательство. Докажем сначала второе утверждение теоремы. Итак, пусть Р<sub>1</sub>: А<sub>1</sub>А<sub>2</sub>...А<sub>n</sub>, P<sub>2</sub>: B<sub>1</sub>B<sub>2</sub>...B<sub>n</sub> — правильные выпуклые n-угольники с одинаковыми сторонами (рис. 287). Докажем, что они равны, т. е. совмещаются движением. | + | '''Доказательство'''. Докажем сначала второе утверждение [[Теоремы и доказательства|теоремы]]. Итак, пусть Р<sub>1</sub>: А<sub>1</sub>А<sub>2</sub>...А<sub>n</sub>, P<sub>2</sub>: B<sub>1</sub>B<sub>2</sub>...B<sub>n</sub> — правильные выпуклые n-угольники с одинаковыми сторонами (рис. 287). Докажем, что они равны, т. е. совмещаются движением.   |  |  |  |  |  |  | - | Треугольники А<sub>1</sub>А<sub>2</sub>А<sub>3</sub> и В<sub>1</sub>В<sub>2</sub>В<sub>3</sub> равны по первому признаку. У них А<sub>1</sub>А<sub>2</sub>=В<sub>1</sub>В<sub>2</sub>, А2Аз = В2Вл и [[Image:20-06-61.jpg]]А<sub>1</sub>А<sub>2</sub>А<sub>3</sub>= [[Image:20-06-61.jpg]]В<sub>1</sub>В<sub>2</sub>В<sub>3</sub>. | + | [[Треугольник. Полные уроки|Треугольники]] А<sub>1</sub>А<sub>2</sub>А<sub>3</sub> и В<sub>1</sub>В<sub>2</sub>В<sub>3</sub> равны по первому признаку. У них А<sub>1</sub>А<sub>2</sub>=В<sub>1</sub>В<sub>2</sub>, А2Аз = В2Вл и [[Image:20-06-61.jpg]]А<sub>1</sub>А<sub>2</sub>А<sub>3</sub>= [[Image:20-06-61.jpg]]В<sub>1</sub>В<sub>2</sub>В<sub>3</sub>.<br> <br>[[Image:24-06-87.jpg|480px|Подобие правильных выпуклых многоугольников]]<br><br><br>Подвергнем [[Площадь ортогональной проекции многоугольника|многоугольник]] P<sub>1</sub> движению, при котором его вершины А<sub>1</sub>А<sub>2</sub>А<sub>3</sub> переходят в вершины В<sub>1</sub>В<sub>2</sub>В<sub>3</sub> соответственно. Как мы знаем, такое движение существует. При этом вершина А<sub>4</sub> перейдет в некоторую точку С. Точки В<sub>4</sub> иС лежат по одну сторону с точкой В<sub>1</sub> относительно прямой В<sub>2</sub>В<sub>3</sub>. Так как движение сохраняет углы и расстояния, то [[Image:20-06-61.jpg]]В<sub>2</sub>В<sub>3</sub>С= [[Image:20-06-61.jpg]]В<sub>2</sub>В<sub>3</sub>В<sub>4</sub> и В<sub>З</sub>С=В<sub>З</sub>В<sub>4</sub>- А значит, точка С совпадает с точкой В<sub>4</sub>. Итак, при нашем движении вершина А4<sub></sub> переходит в вершину В<sub>4</sub>. Далее таким же способом заключаем, что вершина переходит в вершину В<sub>5</sub> и т. д. То есть многоугольник Р<sub>1</sub> переводится движением в многоугольник Р<sub>2</sub>, а значит, они равны.<br>  |  |  | + |   |  |  | + | Чтобы доказать первое утверждение теоремы, подвергнем сначала многоугольник P<sub>1</sub> [[Преобразование подобия|преобразованию подобия]], например  в гомотетии,  с  коэффициентом  подобия  [[Image:24-06-88.jpg|Формула]]-.  При  этом получим правильный n-угольник Р' с такими же сторонами, как и у Р<sub>2</sub>.  |  |  | + |   |  |  | + | По доказанному многоугольник Р' переводится движением в многоугольник P<sub>2</sub>, а значит, многоугольник Р<sub>1</sub> переводится в многоугольник Р<sub>2</sub> преобразованием подобия и движением. А это есть снова преобразование подобия. Теорема доказана.  |  |  | + |   |  |  | + | У подобных фигур [[Задачі: Переставна і сполучна властивості множення. Коефіцієнт|коэффициент]] подобия равен отношению соответствующих линейных размеров. У правильных n-угольников такими линейными размерами являются длины сторон, радиусы вписанных и описанных окружностей. Отсюда следует, что у правильных n-угольников отношения сторон, радиусов вписанных и радиусов описанных окружностей равны. А так как периметры n-угольников тоже относятся как стороны, то у правильных n-угольников отношения периметров, радиусов вписанных и радиусов описанных окружностей равны.   |  |  | + |   |  |  | + | <br> ''А. В. Погорелов, [http://xvatit.com/vuzi/ Геометрия] для 7-11 классов, Учебник для общеобразовательных учреждений'' <br>  |  |  |  |  |  |  | - | <br> <br>[[Image:24-06-87.jpg]]<br><br><br>Подвергнем многоугольник Pi движению, при котором его вершины Ai, А2, A3 переходят в вершины Bi, В2, Вз соответственно. Как мы знаем, такое движение существует. При этом вершина А^ перейдет в некоторую точку С. Точки Вл иС лежат по одну сторону с точкой В\ относительно прямой В2В3. Так как движение сохраняет углы и расстояния, то /^В2ВзС= /-В2В3В4 и ВЗС=ВЗВА- А значит, точка С совпадает с точкой В^. Итак, при нашем движении вершина А^ переходит в вершину В^. Далее таким же способом заключаем, что вершина переходит в вершину В5 и т. д. То есть многоугольник Р\ переводится движением в многоугольник Р2, а значит, они равны.<br>Чтобы доказать первое утверждение теоремы, подвергнем сначала многоугольник Pi преобразованию подобия, например<br>В в<br>гомотетии,  с  коэффициентом  подобия  k — -р-^-.  При  этом<br>получим правильный п-угольник Р' с такими же сторонами, как и у Рг.<br>По доказанному многоугольник Р' переводится движением в многоугольник Ps, а значит, многоугольник Рг переводится в многоугольник Рг преобразованием подобия и движением. А это есть снова преобразование подобия. Теорема доказана.<br>У подобных фигур коэффициент подобия равен отношению соответствующих линейных размеров. У правильных «-угольников такими линейными размерами являются длины сторон, радиусы вписанных и описанных окружностей. Отсюда следует, что у правильных п-угольников отношения сторон, радиусов вписанных и радиусов описанных окружностей равны. А так как периметры п-угольников тоже относятся как стороны, то у правильных п-угольников отношения периметров, радиусов вписанных и радиусов описанных окружностей равны.<br><br> 
 |  |  |  |  |  |  |  | - | <br> ''А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений'' <br> 
 |  |  |  |  |  |  |  |  | <sub>Планирование по математике , учебники и книги [[Гипермаркет знаний - первый в мире!|онлайн]], курсы и задачи по математике для 9 класса [[Математика|скачать]]</sub> <br>   |  | <sub>Планирование по математике , учебники и книги [[Гипермаркет знаний - первый в мире!|онлайн]], курсы и задачи по математике для 9 класса [[Математика|скачать]]</sub> <br>   |  |  |  |  |  |  |  |   '''<u>Содержание урока</u>''' |  |   '''<u>Содержание урока</u>''' |  | - |   <u></u>'''[[Image:1236084776 kr.jpg|10x10px]] конспект урока                       ''' | + |   <u></u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] конспект урока                       ''' |  | - |   [[Image:1236084776 kr.jpg|10x10px]] опорный каркас    | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] опорный каркас    |  | - |   [[Image:1236084776 kr.jpg|10x10px]] презентация урока | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] презентация урока |  | - |   [[Image:1236084776 kr.jpg|10x10px]] акселеративные методы   | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] акселеративные методы   |  | - |   [[Image:1236084776 kr.jpg|10x10px]] интерактивные технологии   | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] интерактивные технологии   |  |  |     |  |     |  |  |   '''<u>Практика</u>''' |  |   '''<u>Практика</u>''' |  | - |   [[Image:1236084776 kr.jpg|10x10px]] задачи и упражнения   | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] задачи и упражнения   |  | - |   [[Image:1236084776 kr.jpg|10x10px]] самопроверка | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] самопроверка |  | - |   [[Image:1236084776 kr.jpg|10x10px]] практикумы, тренинги, кейсы, квесты | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] практикумы, тренинги, кейсы, квесты |  | - |   [[Image:1236084776 kr.jpg|10x10px]] домашние задания | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] домашние задания |  | - |   [[Image:1236084776 kr.jpg|10x10px]] дискуссионные вопросы | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] дискуссионные вопросы |  | - |   [[Image:1236084776 kr.jpg|10x10px]] риторические вопросы от учеников | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] риторические вопросы от учеников |  | - |   
 | + |   |  |  |   '''<u>Иллюстрации</u>''' |  |   '''<u>Иллюстрации</u>''' |  | - |   <u></u>'''[[Image:1236084776 kr.jpg|10x10px]] аудио-, видеоклипы и мультимедиа ''' | + |   <u></u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] аудио-, видеоклипы и мультимедиа ''' |  | - |   [[Image:1236084776 kr.jpg|10x10px]] фотографии, картинки   | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] фотографии, картинки   |  | - |   [[Image:1236084776 kr.jpg|10x10px]] графики, таблицы, схемы | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] графики, таблицы, схемы |  | - |   [[Image:1236084776 kr.jpg|10x10px]] юмор, анекдоты, приколы, комиксы | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] юмор, анекдоты, приколы, комиксы |  | - |   [[Image:1236084776 kr.jpg|10x10px]] притчи, поговорки, кроссворды, цитаты | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] притчи, поговорки, кроссворды, цитаты |  |  |     |  |     |  |  |   '''<u>Дополнения</u>''' |  |   '''<u>Дополнения</u>''' |  | - |   <u></u>'''[[Image:1236084776 kr.jpg|10x10px]] рефераты''' | + |   <u></u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] рефераты''' |  | - |   [[Image:1236084776 kr.jpg|10x10px]] статьи   | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] статьи   |  | - |   [[Image:1236084776 kr.jpg|10x10px]] фишки для любознательных   | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] фишки для любознательных   |  | - |   [[Image:1236084776 kr.jpg|10x10px]] шпаргалки   | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] шпаргалки   |  | - |   [[Image:1236084776 kr.jpg|10x10px]] учебники основные и дополнительные | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] учебники основные и дополнительные |  | - |   [[Image:1236084776 kr.jpg|10x10px]] словарь терминов                            | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] словарь терминов                            |  | - |   [[Image:1236084776 kr.jpg|10x10px]] прочие   | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] прочие   |  |  |   '''<u></u>''' |  |   '''<u></u>''' |  |  |   <u>Совершенствование учебников и уроков |  |   <u>Совершенствование учебников и уроков |  | - |   </u>'''[[Image:1236084776 kr.jpg|10x10px]] исправление ошибок в учебнике''' | + |   </u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] исправление ошибок в учебнике''' |  | - |   [[Image:1236084776 kr.jpg|10x10px]] обновление фрагмента в учебнике   | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] обновление фрагмента в учебнике   |  | - |   [[Image:1236084776 kr.jpg|10x10px]] элементы новаторства на уроке   | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] элементы новаторства на уроке   |  | - |   [[Image:1236084776 kr.jpg|10x10px]] замена устаревших знаний новыми   | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] замена устаревших знаний новыми   |  | - |   
 | + |   |  |  |   '''<u>Только для учителей</u>''' |  |   '''<u>Только для учителей</u>''' |  | - |   <u></u>'''[[Image:1236084776 kr.jpg|10x10px]] идеальные уроки ''' | + |   <u></u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] идеальные уроки ''' |  | - |   [[Image:1236084776 kr.jpg|10x10px]] календарный план на год    | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] календарный план на год    |  | - |   [[Image:1236084776 kr.jpg|10x10px]] методические рекомендации    | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] методические рекомендации    |  | - |   [[Image:1236084776 kr.jpg|10x10px]] программы | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] программы |  | - |   [[Image:1236084776 kr.jpg|10x10px]] обсуждения | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] обсуждения |  |  |     |  |     |  |  |     |  |     |  
 Текущая версия на 12:03, 11 октября 2012 
 Гипермаркет знаний>>Математика>>Математика 9 класс>>Математика:Подобие правильных выпуклых многоугольников 
 
 Подобие правильных выпуклых многоугольников 
 Теорема 13.4. Правильные выпуклые n-угольники подобны. В частности, если у них стороны одинаковы, то они равны.
 Доказательство. Докажем сначала второе утверждение теоремы. Итак, пусть Р1: А1А2...Аn, P2: B1B2...Bn — правильные выпуклые n-угольники с одинаковыми сторонами (рис. 287). Докажем, что они равны, т. е. совмещаются движением. 
 Треугольники А1А2А3 и В1В2В3 равны по первому признаку. У них А1А2=В1В2, А2Аз = В2Вл и  А1А2А3=  В1В2В3. 
 
  
 
 Подвергнем многоугольник P1 движению, при котором его вершины А1А2А3 переходят в вершины В1В2В3 соответственно. Как мы знаем, такое движение существует. При этом вершина А4 перейдет в некоторую точку С. Точки В4 иС лежат по одну сторону с точкой В1 относительно прямой В2В3. Так как движение сохраняет углы и расстояния, то
  В2В3С=  В2В3В4 и ВЗС=ВЗВ4- А значит, точка С совпадает с точкой В4. Итак, при нашем движении вершина А4 переходит в вершину В4. Далее таким же способом заключаем, что вершина переходит в вершину В5 и т. д. То есть многоугольник Р1 переводится движением в многоугольник Р2, а значит, они равны. 
 Чтобы доказать первое утверждение теоремы, подвергнем сначала многоугольник P1 преобразованию подобия, например  в гомотетии,  с  коэффициентом  подобия   -.  При  этом получим правильный n-угольник Р' с такими же сторонами, как и у Р2. По доказанному многоугольник Р' переводится движением в многоугольник P2, а значит, многоугольник Р1 переводится в многоугольник Р2 преобразованием подобия и движением. А это есть снова преобразование подобия. Теорема доказана. 
 У подобных фигур коэффициент подобия равен отношению соответствующих линейных размеров. У правильных n-угольников такими линейными размерами являются длины сторон, радиусы вписанных и описанных окружностей. Отсюда следует, что у правильных n-угольников отношения сторон, радиусов вписанных и радиусов описанных окружностей равны. А так как периметры n-угольников тоже относятся как стороны, то у правильных n-угольников отношения периметров, радиусов вписанных и радиусов описанных окружностей равны.  
 А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений
 
 
 Планирование по математике , учебники и книги онлайн, курсы и задачи по математике для 9 класса скачать 
 Содержание урока
 конспект урока  опорный каркас  презентация урока  акселеративные методы  интерактивные технологии 
Практика  задачи и упражнения  самопроверка  практикумы, тренинги, кейсы, квесты  домашние задания  дискуссионные вопросы  риторические вопросы от учеников
Иллюстрации  аудио-, видеоклипы и мультимедиа  фотографии, картинки  графики, таблицы, схемы  юмор, анекдоты, приколы, комиксы  притчи, поговорки, кроссворды, цитаты
Дополнения  рефераты  статьи  фишки для любознательных  шпаргалки  учебники основные и дополнительные  словарь терминов  прочие 
Совершенствование учебников и уроков  исправление ошибок в учебнике  обновление фрагмента в учебнике  элементы новаторства на уроке  замена устаревших знаний новыми 
Только для учителей  идеальные уроки  календарный план на год  методические рекомендации  программы  обсуждения
Интегрированные уроки 
 Если у вас есть исправления или предложения к данному уроку, напишите нам. 
 Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум.
 
 
 
 |