KNOWLEDGE HYPERMARKET


Спосіб підстановки. Повні уроки
 
(10 промежуточных версий не показаны.)
Строка 1: Строка 1:
<metakeywords>Гіпермаркет Знань - перший в світі!, Гіпермаркет Знань, Математика, 7 клас, Тема 28, Спосіб підстановки</metakeywords>  
<metakeywords>Гіпермаркет Знань - перший в світі!, Гіпермаркет Знань, Математика, 7 клас, Тема 28, Спосіб підстановки</metakeywords>  
-
'''[[Гіпермаркет Знань - перший в світі!|Гіпермаркет Знань]]&gt;&gt;[[Математика|Математика]]&gt;&gt;[[Математика 7 клас. Повні уроки|Математика 7 клас. Повні уроки]]&gt;&gt; АЛГЕБРА: Спосіб підстановки'''  
+
'''[[Гіпермаркет Знань - перший в світі!|Гіпермаркет Знань]]&gt;&gt;[[Математика|Математика]]&gt;&gt;[[Математика 7 клас. Повні уроки|Математика 7 клас. Повні уроки]]&gt;&gt; Алгебра: Спосіб підстановки ''' <br>
-
<br> '''АЛГЕБРА'''<br>
+
==Тема==
-
 
+
*'''Спосіб підстановки '''
-
<br>
+
-
 
+
-
== <u>'''Тема уроку'''</u> ==
+
-
 
+
-
*<u>'''Спосіб підстановки'''</u><br>
+
-
 
+
-
<br> <br>
+
-
 
+
-
== <u>'''Мета уроку'''</u> ==
+
 +
==Мета==
*навчитися розв’язувати системи рівнянь методом підстановки<br>
*навчитися розв’язувати системи рівнянь методом підстановки<br>
-
== <u>'''Хід уроку'''</u> ==
+
==План==
 +
 
 +
===Етапи розв'язування системи рівнянь методом підстановки===
-
{| cellspacing="1" cellpadding="1" border="1" style="width: 760px; height: 162px;"
+
{| width="688" height="299" cellspacing="1" cellpadding="1" border="1"
|-
|-
-
| Етапи розв'язування
+
| '''Етапи розв'язування'''
| Приклади для системи [[Image:20-03-10-01.jpg]]2х-у=4; х+3у=9
| Приклади для системи [[Image:20-03-10-01.jpg]]2х-у=4; х+3у=9
|-
|-
-
| 1. За допомогою якого-небудь рівняння виразити одну невідому через іншу
+
| 1. За допомогою якого-небудь [[Рівняння. Корені рівняння. Розв'язування рівнянь. Повні уроки|рівняння]] виразити одну невідому через іншу  
| 1. З першого рівняння виражаємо змінну у: у=2х-4 &lt;- підстановка
| 1. З першого рівняння виражаємо змінну у: у=2х-4 &lt;- підстановка
|-
|-
-
| 2. Підставитиздобутий вираз в інше рівняння системи: в результаті матимемо одне рівняння з однією невідомою.
+
| 2. Підставити здобутий вираз в інше [[Система лінійних рівнянь з двома змінними. Повні уроки|рівняння системи]]: в результаті матимемо одне [[Задачі до теми Лінійне рівняння з однією змінною|рівняння з однією невідомою]].  
|  
|  
-
2. х+3(2х-4)=9
+
2. х+3(2х-4)=9  
-
х+6х-12=9
+
х+6х-12=9  
-
7х=21
+
7х=21  
|-
|-
-
| 3. Знайти корені цього рівняння, тобто знайти значення однієї з невідомих системи.
+
| 3. Знайти корені цього рівняння, тобто знайти значення однієї з невідомих системи.  
| 3. х=3
| 3. х=3
|-
|-
-
| 4. Знайти відповідні значення другої невідомої, використавши підстановку
+
| 4. Знайти відповідні значення другої невідомої, використавши [[Спосіб підстановки|підстановку]]
| 4. у=2х-4=2*3-4=6-4=2
| 4. у=2х-4=2*3-4=6-4=2
|-
|-
-
| 5. Записати відповідь.
+
| 5. Записати відповідь.  
| 5. (3;2)
| 5. (3;2)
|}
|}
-
<br>&nbsp; <br>[[Image:1901-73.jpg|633x570px|1901-73.jpg]]<br>{{#ev:youtube|dbW4Y8CClj8}}<br><br>  
+
<br>  
-
== <u>'''Самостійна робота'''</u> ==
+
===Приклади розв'язування способом підстановки===
 +
<br>  
-
<br><br>[[Image:1901-74.jpg|626x735px|1901-74.jpg]]&nbsp;<br><br><br>
+
Приклад 1.  
-
== <u>Список використаної літератури</u> ==
+
Для яких значень коефіцієнта а [[Система лінійних рівнянь з двома змінними|система рівнянь]]
-
*1. Урок на тему «Спосіб підстановки» викладача Конченко Т. М. , Гімназії міжнародних відносин, м. Київ (СЗШ №323).
+
[[Image:20-03-10-01.jpg]]3х-ау=2; х-2у=3  
-
*2. Істер О. А. «Алгебра. 7 клас».
+
-
*3. Мерзляк А. Г., Полонський В. Б., Рабінович Ю. М., ЯкірМ. С. Збірник задачі завдань для тематичного оцінювання з алгебри для 7 класу. – Харків, Гімназія, 2004. – 112 с.: іл.
+
-
Відредаговано і надіслано Мазуренко М.С.<br>  
+
не має розв'язку?
 +
 
 +
Виразимо із другого рівняння змінну х через змінну у: х=2у+3.
 +
 
 +
Підставивши у перше рівняння системи замість х вираз 2у+3, одержимо рівняння:
 +
 
 +
3(2у+3)-ау=2.
 +
 
 +
Далі матимемо:
 +
 
 +
6у+9-ау=2
 +
 
 +
6у-ау=2-9
 +
 
 +
(6-а)у=-7
 +
 
 +
Останнє рівняння не має коренів лише у випадку, коли коєфіцієнт біля у дорівнює нулю: 6-а=0; а=6. Для цього значення а система рівняня не має розв'язку.
 +
 
 +
Відповідь: а=6.
 +
 
 +
Приклад 2.
 +
 
 +
[[Графік лінійного рівняння з двома змінними|Графіком]] функції є пряма, що проходить через точки А(-1;2) і В(2;5). Задати цю функцію формулою.
 +
 
 +
Пряма є графіком лінійної функції. Нехай шукана лінійна функція задається формулою y=kx+b, де k і b - поки що невідомі числа. Оскільки графік функції проходить через точки А(-1;2) і В(2;5), то повинні виконуватися дві рівності<br>
 +
 
 +
2=k(-1)+b
 +
 
 +
i
 +
 
 +
5=2k+b
 +
 
 +
Розв'язавши систему
 +
 
 +
[[Image:20-03-10-01.jpg]]2=-k+b;&nbsp; 5=2k+b
 +
 
 +
Знайдемо: k=1 і b=3
 +
 
 +
Отже, функція задається формулою у=х+3.
 +
 
 +
<br>{{#ev:youtube|dbW4Y8CClj8}}<br>
 +
 
 +
===Самостійна робота===
 +
 
 +
<br><br>[[Image:1901-74.jpg|480px|Завдання]]&nbsp;<br>
 +
 
 +
==Список використаної літератури==
 +
 
 +
''1. Урок на тему «Спосіб підстановки» викладача Конченко Т. М. , Гімназії міжнародних відносин, м. Київ (СЗШ №323). <br> 2. Істер О. А. «Алгебра. [[7_клас_уроки|7 клас]]». <br> 3. Мерзляк А. Г., Полонський В. Б., Рабінович Ю. М., ЯкірМ. С. Збірник задачі завдань для тематичного оцінювання з алгебри для 7 класу. – Харків, [http://xvatit.com/vuzi/ Гімназія], 2004. – 112 с.: іл.''<br>  
----
----
-
'''<u>Над уроком працювали</u>'''  
+
<br> ''Відредаговано і надіслано Мазуренко М.С.''<br>  
 +
 
 +
----
 +
 
 +
<br> '''Над уроком працювали'''  
Конченко Т. М.  
Конченко Т. М.  
Мазуренко М.С.  
Мазуренко М.С.  
 +
 +
<br>
----
----
Строка 72: Строка 119:
<br>  
<br>  
-
Поставить вопрос о современном образовании, выразить идею или решить назревшую проблему Вы можете на [http://xvatit.com/forum/ '''Образовательном форуме'''], где на международном уровне собирается образовательный совет свежей мысли и действия. Создав [http://xvatit.com/club/blogs/ '''блог,'''] Вы не только повысите свой статус, как компетентного преподавателя, но и сделаете весомый вклад в развитие школы будущего. [http://xvatit.com/school/guild/ '''Гильдия Лидеров Образования'''] открывает двери для специалистов&nbsp; высшего ранга и приглашает к сотрудничеству в направлении создания лучших в мире школ.<br>  
+
Поставить вопрос о современном образовании, выразить идею или решить назревшую проблему Вы можете на [http://xvatit.com/forum/ Образовательном форуме], где на международном уровне собирается образовательный совет свежей мысли и действия. Создав [http://xvatit.com/club/blogs/ блог''','''] Вы не только повысите свой статус, как компетентного преподавателя, но и сделаете весомый вклад в развитие школы будущего. [http://xvatit.com/school/guild/ Гильдия Лидеров Образования] открывает двери для специалистов&nbsp; высшего ранга и приглашает к сотрудничеству в направлении создания лучших в мире школ.<br>  
[[Category:Математика_7_клас]]
[[Category:Математика_7_клас]]

Текущая версия на 13:55, 25 декабря 2012

Гіпермаркет Знань>>Математика>>Математика 7 клас. Повні уроки>> Алгебра: Спосіб підстановки

Содержание

Тема

  • Спосіб підстановки

Мета

  • навчитися розв’язувати системи рівнянь методом підстановки

План

Етапи розв'язування системи рівнянь методом підстановки

Етапи розв'язування Приклади для системи 20-03-10-01.jpg2х-у=4; х+3у=9
1. За допомогою якого-небудь рівняння виразити одну невідому через іншу 1. З першого рівняння виражаємо змінну у: у=2х-4 <- підстановка
2. Підставити здобутий вираз в інше рівняння системи: в результаті матимемо одне рівняння з однією невідомою.

2. х+3(2х-4)=9

х+6х-12=9

7х=21

3. Знайти корені цього рівняння, тобто знайти значення однієї з невідомих системи. 3. х=3
4. Знайти відповідні значення другої невідомої, використавши підстановку 4. у=2х-4=2*3-4=6-4=2
5. Записати відповідь. 5. (3;2)


Приклади розв'язування способом підстановки


Приклад 1.

Для яких значень коефіцієнта а система рівнянь

20-03-10-01.jpg3х-ау=2; х-2у=3

не має розв'язку?

Виразимо із другого рівняння змінну х через змінну у: х=2у+3.

Підставивши у перше рівняння системи замість х вираз 2у+3, одержимо рівняння:

3(2у+3)-ау=2.

Далі матимемо:

6у+9-ау=2

6у-ау=2-9

(6-а)у=-7

Останнє рівняння не має коренів лише у випадку, коли коєфіцієнт біля у дорівнює нулю: 6-а=0; а=6. Для цього значення а система рівняня не має розв'язку.

Відповідь: а=6.

Приклад 2.

Графіком функції є пряма, що проходить через точки А(-1;2) і В(2;5). Задати цю функцію формулою.

Пряма є графіком лінійної функції. Нехай шукана лінійна функція задається формулою y=kx+b, де k і b - поки що невідомі числа. Оскільки графік функції проходить через точки А(-1;2) і В(2;5), то повинні виконуватися дві рівності

2=k(-1)+b

i

5=2k+b

Розв'язавши систему

20-03-10-01.jpg2=-k+b;  5=2k+b

Знайдемо: k=1 і b=3

Отже, функція задається формулою у=х+3.



Самостійна робота



Завдання 

Список використаної літератури

1. Урок на тему «Спосіб підстановки» викладача Конченко Т. М. , Гімназії міжнародних відносин, м. Київ (СЗШ №323).
2. Істер О. А. «Алгебра. 7 клас».
3. Мерзляк А. Г., Полонський В. Б., Рабінович Ю. М., ЯкірМ. С. Збірник задачі завдань для тематичного оцінювання з алгебри для 7 класу. – Харків, Гімназія, 2004. – 112 с.: іл.



Відредаговано і надіслано Мазуренко М.С.



Над уроком працювали

Конченко Т. М.

Мазуренко М.С.




Поставить вопрос о современном образовании, выразить идею или решить назревшую проблему Вы можете на Образовательном форуме, где на международном уровне собирается образовательный совет свежей мысли и действия. Создав блог, Вы не только повысите свой статус, как компетентного преподавателя, но и сделаете весомый вклад в развитие школы будущего. Гильдия Лидеров Образования открывает двери для специалистов  высшего ранга и приглашает к сотрудничеству в направлении создания лучших в мире школ.

Предмети > Математика > Математика 7 клас