KNOWLEDGE HYPERMARKET


Среднее арифметическое
 
(3 промежуточные версии не показаны)
Строка 1: Строка 1:
-
<metakeywords>Гипермаркет Знаний - первый в мире!, Гипермаркет Знаний, Математика, 5 класс, Алгебра, урок, на Тему, Среднее арифметическое</metakeywords>  
+
<metakeywords>Гипермаркет Знаний - первый в мире!, Гипермаркет Знаний, Математика, 5 класс, Алгебра, урок, на Тему, Среднее арифметическое, чисел, координатном луче, площадь, деление, координату, длину, таблицу</metakeywords>  
'''[[Гипермаркет знаний - первый в мире!|Гипермаркет знаний]]&gt;&gt;[[Математика|Математика]]&gt;&gt;[[Математика 5 класс|Математика 5 класс]]&gt;&gt;Математика:Среднее арифметическое'''  
'''[[Гипермаркет знаний - первый в мире!|Гипермаркет знаний]]&gt;&gt;[[Математика|Математика]]&gt;&gt;[[Математика 5 класс|Математика 5 класс]]&gt;&gt;Математика:Среднее арифметическое'''  
<br>  
<br>  
 +
'''Среднее арифметическое'''
-
'''Среднее арифметическое '''<br>  
+
<h2>Что такое среднее арифметическое</h2>
-
<br>'''Задача 1'''. Миша, Коля и Петя были в походе. Подойдя к лесу, они решили сделать привал. У Миши было 2 пирожка, у Пети — 4 и у Коли — 6. Все пирожки мальчики разделили поровну и съели. Сколько пирожков съел каждый? <br>
+
Средним арифметическим нескольких величин является отношение суммы этих величин к их количеству.
 +
 +
Среднее арифметическое определенного ряда чисел называется сумма всех этих чисел, поделенная на количество слагаемых. Таким образом, среднее арифметическое является средним значением числового ряда.  
-
Решение. Всего у мальчиков было 2 + 4 + 6, то есть 12 пирожков. Каждому досталось по 12&nbsp;: 3, то есть по 4 пирожка.&nbsp; '''Средним арифметическим''' нескольких чисел называют частное от деления суммы этих чисел на число слагаемых. <br>
+
Чему равно среднее арифметическое нескольких чисел? А равно они сумме этих чисел, которая поделена на количество слагаемых в этой сумме.
-
[[Image:17-06-202.jpg|550px|Среднее арифметическое ]]<br>  
+
<br>
 +
[[Image:5kl_SredArif01.jpg|800x500px|сред.арифмет]]
 +
<br>
-
'''Задача 2.''' Человек шел 2 ч со скоростью 4,6 км/ч и 3 ч со скоростью 5,1 км/ч. С какой постоянной скоростью он должен был идти, чтобы пройти то же расстояние за то же время?
+
<h2>Как найти среднее арифметическое число</h2>
-
Решение. Найдем все расстояние, которое прошел пешеход: <br>
+
В вычислении или нахождении среднего арифметического нескольких чисел, нет ничего сложного,  достаточно сложить все представленные числа, а полученную сумму разделить на количество слагаемых. Полученный результат и будет средним арифметическим этих чисел.
-
4,6 • 2 + 5,1 • 3 = 9,2 + 15,3 = 24,5 (км). <br>  
+
<br>
 +
[[Image:5kl_SredArif02.jpg|500x200px|сред.арифмет]]
 +
<br>
 +
 +
Рассмотрим этот процесс более подробно.  Что же нам нужно сделать для вычисления среднего арифметического и получения конечного результата этого числа.
-
Разделим полученный результат на время, затраченное на этот путь:
+
• Во-первых, для его вычисления нужно определить набор чисел или их количество.  В этот набор могут входить большие и маленькие числа, и их количество может быть каким угодно.
-
24,5&nbsp;: 5 = 4,9. Получим ответ: пешеход должен идти с постоянной скоростью 4,9 км/ч. Такую скорость называют средней скоростью движения. <br>
+
• Во-вторых, все эти числа нужно сложить и получить их сумму. Естественно, если числа несложные  и их небольшое количество, то вычисления можно произвести, записав от руки. А если же набор чисел впечатляющий, то лучше воспользоваться калькулятором или электронной таблицей.  
-
[[Image:17-06-203.jpg|550px|Среднее арифметическое ]]<br>Этот же ответ можно получить, если найти среднее арифметическое скоростей за каждый час движения: (4,6 + 4,6 + 5,1 + 5,1 + 5,1)&nbsp;: 5 = 4,9.  
+
• В-третьих, необходимо подсчитать количество чисел, входящих в список. При повторе числа, следует каждое из них считать по отдельности.
-
Подобным образом находят среднюю урожайность, среднюю производительность и т. д.
+
• И, в-четвертых, полученную от сложения сумму необходимо разделить на количество чисел. В итоге мы получим результат, который и будет средним арифметическим числом этого ряда.  
 +
<br>
 +
[[Image:5kl_SredArif03.jpg|500x200px|сред.арифмет]]
 +
<br>
 +
 +
<h2>Для чего нужно среднее арифметическое</h2>
 +
Среднее арифметическое может пригодиться не только для решения примеров и задач на уроках математики, но для других целей, необходимых в повседневной жизни человека. Такими целями может служить подсчет среднего арифметического для расчета среднего расхода финансов в месяц, или для подсчета времени, которое вы тратите на дорогу, также для того чтобы узнать посещаемость, производительность, скорость движения, урожайность и много другого.
-
''Какое число называют средним арифметическим нескольких чисел? <br>Как найти среднее арифметическое нескольких чисел?&nbsp; <br>Как найти среднюю скорость движения? ''<br>
+
Так, например, давайте попробуем рассчитать, сколько времени вы тратите на дорогу в школу.  Идя в школу или возвращаясь, домой вы каждый раз тратите на дорогу разное время, так как когда вы спешите, то вы идете быстрее, и поэтому дорога занимает меньше времени. А вот, возвращаясь, домой вы можете идти не спеша, общаясь с одноклассниками, любуясь природой и поэтому времени на дорогу займет больше.
-
<br>1496. Найдите среднее арифметическое чисел 2 и 10. Изобразите на координатном луче число 2, число 10 и их среднее арифметическое. Сделайте вывод. <br>
+
Поэтому, точно определить время, затраченное на дорогу у вас не получиться, но благодаря среднему арифметическому вы сможете приблизительно узнать время, которое вы тратите на дорогу.  
-
1497. Найдите среднее арифметическое чисел: <br>
+
Припустим, что в первый день после выходных, вы потратили на путь от дома до школу пятнадцать минут, на второй день ваш путь занял двадцать минут, в среду вы прошли расстояние за двадцать пять минут, за такое же время составил ваш путь и в четверг, а в пятницу вы никуда не торопились и возвращались целых пол часа.  
-
а) 70,6 и 71,3; <br>б) 0,1; 0,2 и 0,3; <br>в) 1,11; 1,12; 1,19 и 1,48; <br>г) 7,381; 5,004; 6,118; 8,019; 7,815 и 5,863. <br>
+
Давайте найдем среднее арифметическое, прибавив время, за все пять дней. Итак,  
-
1498. На рисунке 153 АВ = ВС, где А(8,9) и 5(9,5). Найдите координатуточки С. Чему равно среднее арифметическое координат точек А и С? <br><br>[[Image:17-06-204.jpg|480px|Задание]]<br>
+
15 + 20 + 25 + 25 + 30 = 115
-
1499. Четыре поля имеют площадь по 200 га каждое. На первом поле собрали 7220 ц пшеницы, на втором — 7560 ц пшеницы, на третьем — 7090 ц пшеницы и на четвертом — 7130 ц пшеницы. Определите урожайность пшеницы на каждом поле и найдите среднюю урожайность. <br>
+
Теперь разделим эту сумму на количество дней
-
1500. С поля площадью 87 га сняли урожай 10 450 ц картофеля, а с поля площадью 113 га собрали 14 980 ц картофеля. Найдите среднюю урожайность картофеля на этих полях. <br>
+
115 : 5 = 23
-
1501. Найдите среднее арифметическое чисел 84,32; 84,47; 84,56 и 84,68 и округлите его до десятых. <br>
+
Благодаря такому способу вы узнали, что путь от дома до школы вы приблизительно тратите двадцать три минуты своего времени.
-
1502. Участника соревнований пр фщур^шу катанию на коньках получила оценки 5,3; 4,8; 5,4; 5,0; 5,3; 5,4; 5,3; 5,2; 5,1. Найдите среднюю оценку этой участницы. <br>  
+
<h2>Домашнее задание</h2>
-
1503. Автомобиль двигался 3,2 ч по шоссе со скоростью 90 км/ч, затем 1,5 ч по грунтовой дороге со скоростью 45 км/ч, наконец, 0,3 ч по проселочной дороге со скоростью 30 км/ч. Найдите среднюю скорость движения автомобиля на всем пути. <br>
+
1.Путем нехитрых вычислений найдите среднее арифметическое число посещаемости учеников вашего класса за неделю.
-
1504. Поезд шел 4 ч со скоростью 70 км/ч и 3 ч со скоростью 84 км/ч. Найдите среднюю скорость поезда на пройденном за это время пути. <br>
+
2. Найдите среднее арифметическое:
-
 
+
-
1505. Среднее арифметическое двух чисел равно 3,1. Одно число равно 3,8- Найдите второе число. <br>
+
-
 
+
-
[[Image:17-06-205.jpg|550px|Среднее арифметическое]]<br>
+
-
 
+
-
1506. Среднее арифметическое шести чисел равно 3,5, а среднее арифметическое четырех других чисел — 2,25. Найдите среднее арифметическое этих десяти чисел. <br>
+
-
 
+
-
1507. На первом участке пути поезд шел 2 ч со скоростью 60 км/ч, а на втором он шел 3 ч. С какой скоростью шел поезд на втором участке, если его средняя скорость на двух участках была равна 51 км/ч? <br>
+
-
 
+
-
1508. Скорость катера по течению 18,6 км/ч, а против течения 14,2 км/ч. Найдите собственную скорость катера и скорость течения. <br>
+
-
 
+
-
1509. Одно число больше другого в 1,5 раза, среднее арифметическое этих двух чисел равно 30. Найдите эти числа. <br>
+
-
 
+
-
1510. Вычислите устно: <br>
+
-
 
+
-
а) 0,14 + 0,06; <br>&nbsp;&nbsp; 2 - 0,7; <br>&nbsp;&nbsp; 100 • 0,012; <br>&nbsp;&nbsp;&nbsp; 0,42&nbsp;: 7; <br>
+
-
 
+
-
б) 3,18 - 1,08<br>
+
-
 
+
-
&nbsp;&nbsp;&nbsp; 2,06 + 1,04<br>
+
-
 
+
-
&nbsp;&nbsp;&nbsp; 5,4 • 0,1<br>
+
-
 
+
-
&nbsp;&nbsp;&nbsp; 4,08&nbsp;: 4<br>
+
-
 
+
-
в) 5,7 + 0,13<br>
+
-
 
+
-
&nbsp;&nbsp;&nbsp; 2,85 - 1,5<br>
+
-
 
+
-
&nbsp;&nbsp;&nbsp; 0,8 • 0,5
+
-
 
+
-
&nbsp;&nbsp;&nbsp; 0,5 6 2<br>
+
-
 
+
-
г)&nbsp;&nbsp; 0,4<sup>2</sup><br>
+
-
 
+
-
&nbsp;&nbsp;&nbsp;&nbsp; 0,3<sup>2</sup><br>
+
-
 
+
-
&nbsp;&nbsp;&nbsp;&nbsp; 0,05<sup>2</sup><br>
+
-
 
+
-
&nbsp;&nbsp;&nbsp; 0,01<sup>3</sup><br>
+
-
 
+
-
1511. Выполните деление
+
-
 
+
-
а) 40&nbsp;: 0,4; <br>б) 0,8&nbsp;: 0,2; <br>в) 20&nbsp;: 0,5; <br>г) 100&nbsp;: 0,1. <br>д) 1000&nbsp;: 0,01<br>е) 6&nbsp;: 0,3; <br>ж) 0,18&nbsp;: 0,6<br>
+
-
 
+
-
з) 0,1&nbsp;: 0,01<br>и) 1&nbsp;: 0,5<br><br>1512. В летний лагерь детей отправляли на 6 одинаковых автобусах. В автобусах оказалось 29, 41, 28, 22, 27 и 33 человека. Можно ли было отъезжающих разместить в автобусах поровну? <br>
+
-
 
+
-
1513. Вы знаете, что <br>
+
-
 
+
-
[[Image:17-06-206.jpg|480px|Задание]]<br>
+
-
 
+
-
Поэтому умножить число на 0,5 означает найти половину числа, умножить на 0,125 означает найти восьмую часть числа и т. д. <br>Подумайте, как проще найти значение выражения: <br>
+
-
 
+
-
а) 400-0,1; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp; в) 84 • 0,25; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp; д) 68 • 0,5. <br>б) 20 • 0,2; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp; г) 16 • 0,125; <br>
+
-
 
+
-
Запомните эту таблицу. <br>
+
-
 
+
-
1514. Может ли произведение двух чисел оказаться меньше одного из множителей? Меньше обоих множителей? Может ли частное оказаться больше делимого? Приведите примеры. <br>
+
-
 
+
-
1515. Мальчик решил определить длину моста через реку. Он заметил, что расстояние между двумя столбиками, на которых крепятся перила, равнодвум шагам, а столбиков всего 30. Какова длина моста, если один шаг мальчика 0,4 м? <br>
+
-
 
+
-
1516. Выполните деление: <br>
+
-
 
+
-
а) 0,432&nbsp;: 0,24;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <br>б) 0,8625&nbsp;: 0,375; <br>
+
-
 
+
-
в) 1,872&nbsp;: 2,34;<br>
+
-
 
+
-
г) 0,481&nbsp;: 0,037;<br>д) 41,48&nbsp;: 34; <br>е) 127,2&nbsp;: 159. <br>
+
-
 
+
-
1517. Решите уравнение: <br>
+
-
 
+
-
а) 3,5x - 2,3x + 3,8 = 4,28; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp; в) (8,3 - k) • 4,7 = 5,64; <br>б) 4,7y - (2,5у + 12,4) = 1,9; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp; г) (9,2 - m) • 3,2 = 16. <br>
+
-
 
+
-
1518. Школьная географическая площадка занимает 36 м<sup>2</sup>. Это составляет 0,1 всего пришкольного участка. Найдите площадь пришкольного участка. <br>
+
-
 
+
-
1519. В 12 ч скорый поезд догнал пассажирский, а в 18 ч был уже впереди его на 120 км. Какое расстояние между поездами было в 10 ч, если скорость - пассажирского поезда 70 км/ч? Какое данное в условии задачи лишнее? <br>
+
-
 
+
-
1520. Длина стороны основания пирамиды Хеопса 230 м. Туристы, осматривая пирамиду, идут со скоростью 0,32 м/с. Успеют ли туристы за час обойти&nbsp;? вокруг пирамиды? <br>
+
-
 
+
-
1521. Заполните таблицу: <br>
+
-
 
+
-
[[Image:17-06-207.jpg|550px|Задание]]<br>
+
-
 
+
-
1522. Вычислите: <br>
+
-
 
+
-
1) (7 -5,38) • 2,5<br>
+
-
 
+
-
2) (8 - 6,46) •1,5
+
-
 
+
-
1523. В двоичной системе счисления при записи числа используют всего две цифры: 0 и 1. Число «один» записывается, как обычно, 1, но число «два» составляет уже единицу второго разряда и поэтому записывается так: 10<sub>2</sub> «одна двойка и нуль единиц» (цифра 2, находящаяся внизу в конце записи числа, означает, что число записано в двоичной системе).
+
-
 
+
-
Число «три» изображается: 11<sub>2</sub> «одна двойка и одна единица». Число «четыре» представляет собой единицу следующего, третьего разряда и поэтому записывается так: 100<sub>2</sub> «одна четверка, нуль двоек и нуль единиц».
+
-
 
+
-
Таким образом, если в записи числа цифру 1 передвинуть влево на один разряд, то ее значение увеличивается вдвое (а не в десять раз, как в нашей десятичной системе). Сравните представление числа, запись которого состоит из четырех цифр 1, в виде суммы разрядных единиц в десятичной и двоичной системах:
+
-
 
+
-
1111 = 1 • 1000 + 1 • 100 + 1 • 10 + 1 = 1 • 10<sup>3</sup> + 1 • 10<sup>2</sup> + 1 • 10 + 1; <br>1111<sub>2</sub> = 1 • 8 + 1• 4 + 1• 2 + 1 = 1• 2<sup>3</sup>+1• 2<sup>2</sup> + 1• 2 + 1 = 15.
+
-
 
+
-
Попробуйте записать в десятичной системе счисления числа, которые в двоичной системе пишутся так: 102; 1002; 1012; 1102; 11102.
+
-
 
+
-
Запишите в двоичной системе все натуральные числа от 1 до 15 включительно.
+
-
 
+
-
Подумайте, почему двоичная система широко используется в [http://xvatit.com/it '''вычислительной технике'''], но она неудобна в повседневной практике.
+
-
 
+
-
1524. Найдите среднее арифметическое чисел:
+
-
 
+
-
а) 32,15; 31,28; 29,16; 34,54 и округлите ответ до сотых; <br>б) 3,234; 3,452; 4,185; 2,892 и округлите ответ до тысячных.
+
-
 
+
-
1525. Измерьте длину десяти своих шагов и найдите среднюю длину шага.
+
-
 
+
-
1526. Автомашина шла 3 ч со скоростью 53,5 км/ч, 2 ч со скоростью 62,3 км/ч и 4 ч со скоростью 48,2 км/ч. Найдите среднюю скорость движения автомашины на всем пути.
+
-
 
+
-
1527. Турист шел 3,8 ч со скоростью 1,2 м/с, а затем 2,2 ч со скоростью 0,9 м/с. Какова средняя скорость движения туриста на всем пути?
+
-
 
+
-
1528. Среднее арифметическое двух чисел 4,6. Одно число 5,4. Найдите другое число.
+
-
 
+
-
1529. Среднее арифметическое двух чисел 4,4. Найдите эти числа, если одно из них на 1,4 больше другого.
+
-
 
+
-
1530. Среднее арифметическое трех чисел 6. Найдите эти числа, если первое число в 2,5 раза больше, а второе в 1,5 раза больше третьего.
+
-
 
+
-
1531. За 7 ч тракторист вспахал 4,9 га. С какой скоростью двигался трактор, если ширина полосы, вспахиваемая плугами, равна 1,75 м?
+
-
 
+
-
1532. Для приготовления салата из зеленого лука берут 150 г зеленого лука и 30 г сметаны. Сколько сметаны потребуется повару, чтобы приготовить салат из 27 кг зеленого лука?
+
-
 
+
-
1533. Каждый год растительный мир дает 117 млрд т прироста массы. Каждые 3 т этой массы дают столько же энергии, сколько 1 т нефти. Сколько тонн нефти может заменить прирост массы растений за 4 года?
+
-
 
+
-
1534. Найдите значение выражения:
+
-
 
+
-
а) 3,4x + 5,7x + 6,6x- 4,7x при х = 3,6; 0,8; 10; <br>б) 3,8m - (2,8m + 0,7т) при m = 2,4; 8,57; <br>в) 16,75y - (4,75y+ 10,8) при у = 0,9; 3,01. <br><br>1535. Выполните действия:
+
-
 
+
-
а) 42,165 - 22,165&nbsp;: (0,61 + 3,42); <br>б) 243,08 + 256,32&nbsp;: (28 - 25,5).
+
-
 
+
-
[[Image:17-06-208.jpg|180px|Римский абак]]<br>Первыми «[http://xvatit.com/it '''вычислительными'''] устройствами», которыми пользовались в древности люди, были пальцы рук и камешки. Позднее появились бирки с зарубками и веревки с узелками.
+
-
 
+
-
В Древнем Египте и Древней Греции задолго до нашей эры использовали абйк — доску с полосками, по которым передвигались камешки. Это было первое устройство, специально предназначенное для вычислений. Со временем абак совершенствовали — в римском абаке (рис. 154) камешки или шарики передвигались по желобкам (от римлян к нам перешло слово «калькуляция», означающее буквально «счет камешками»); в китайских счетах «суан-пан» {рис. 155, а) и японских «соробан» (рис. 155, б) шарики были нанизаны на прутики. Абак просуществовал до 17 века, когда его заменили письменные вычисления. Русский абак — счеты (рис. 155, в) появились в XVI веке, ими пользуются и в наши дни. Большое преимущество русских счетов в том, что они основаны на десятичной системе счисления, а не на пятеричной, как все остальные абаки.
+
-
 
+
-
Первый арифмометр, выполнявший все четыре арифметических действия, создал в 1673 году немецкий физик, изобретатель и математик Готфрид Вильгельм Лейбниц, наиболее совершенный для того времени арифмометр изобрел в 1878 году великий русский [http://xvatit.com/vuzi/ '''математик'''] Пафнутий Львович Чебышёв.
+
-
 
+
-
Создание миниатюрных ЭВМ — микрокалькуляторов — стало возможно после того, как были разработаны способы изготовления электронных схем, содержащих тысячи транзисторов и других элементов на пластинке размером с ноготь человека. С использованием микрокалькуляторов для вычислений мы познакомимся в следующем пункте учебника.
+
-
 
+
-
[[Image:17-06-209.jpg|480px|Счеты]]<br><br>
+
-
 
+
-
<br> ''Н.Я. ВИЛЕНКИН, B. И. ЖОХОВ, А. С. ЧЕСНОКОВ, C. И. ШВАРЦБУРД, Математика 5 класс, Учебник для общеобразовательных учреждений'' <br>
+
-
 
+
-
 
+
-
 
+
-
<sub>Календарно-тематическое планирование, задачи школьнику 5 класса по математике [[Математика|скачать]], Математика [[Гипермаркет знаний - первый в мире!|онлайн]] </sub><br>
+
-
 
+
-
'''<u>Содержание урока</u>'''
+
-
<u></u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] конспект урока                      '''
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] опорный каркас 
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] презентация урока
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] акселеративные методы
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] интерактивные технологии
+
-
+
-
'''<u>Практика</u>'''
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] задачи и упражнения
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] самопроверка
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] практикумы, тренинги, кейсы, квесты
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] домашние задания
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] дискуссионные вопросы
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] риторические вопросы от учеников
+
-
+
-
'''<u>Иллюстрации</u>'''
+
-
<u></u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] аудио-, видеоклипы и мультимедиа '''
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] фотографии, картинки
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] графики, таблицы, схемы
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] юмор, анекдоты, приколы, комиксы
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] притчи, поговорки, кроссворды, цитаты
+
-
+
-
'''<u>Дополнения</u>'''
+
-
<u></u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] рефераты'''
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] статьи
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] фишки для любознательных
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] шпаргалки
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] учебники основные и дополнительные
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] словарь терминов                         
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] прочие
+
-
'''<u></u>'''
+
-
<u>Совершенствование учебников и уроков
+
-
</u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] исправление ошибок в учебнике'''
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] обновление фрагмента в учебнике
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] элементы новаторства на уроке
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] замена устаревших знаний новыми
+
-
+
-
'''<u>Только для учителей</u>'''
+
-
<u></u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] идеальные уроки '''
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] календарный план на год 
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] методические рекомендации 
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] программы
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] обсуждения
+
-
+
-
+
-
'''<u>Интегрированные уроки</u>'''<u>
+
-
</u>
+
 +
<br>
 +
[[Image:5kl_SredArif04.jpg|800x500px|сред.арифмет]]
<br>  
<br>  
-
Если у вас есть исправления или предложения к данному уроку, [http://xvatit.com/index.php?do=feedback напишите нам].
+
3. Решите задачу:
-
Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - [http://xvatit.com/forum/ Образовательный форум].
+
<br>
 +
[[Image:5kl_SredArif05.jpg|800x500px|сред.арифмет]]
 +
<br>

Текущая версия на 17:23, 1 июня 2015

Гипермаркет знаний>>Математика>>Математика 5 класс>>Математика:Среднее арифметическое


Среднее арифметическое

Содержание

Что такое среднее арифметическое

Средним арифметическим нескольких величин является отношение суммы этих величин к их количеству.

Среднее арифметическое определенного ряда чисел называется сумма всех этих чисел, поделенная на количество слагаемых. Таким образом, среднее арифметическое является средним значением числового ряда.

Чему равно среднее арифметическое нескольких чисел? А равно они сумме этих чисел, которая поделена на количество слагаемых в этой сумме.


сред.арифмет

Как найти среднее арифметическое число

В вычислении или нахождении среднего арифметического нескольких чисел, нет ничего сложного, достаточно сложить все представленные числа, а полученную сумму разделить на количество слагаемых. Полученный результат и будет средним арифметическим этих чисел.


сред.арифмет

Рассмотрим этот процесс более подробно. Что же нам нужно сделать для вычисления среднего арифметического и получения конечного результата этого числа.

• Во-первых, для его вычисления нужно определить набор чисел или их количество. В этот набор могут входить большие и маленькие числа, и их количество может быть каким угодно.

• Во-вторых, все эти числа нужно сложить и получить их сумму. Естественно, если числа несложные и их небольшое количество, то вычисления можно произвести, записав от руки. А если же набор чисел впечатляющий, то лучше воспользоваться калькулятором или электронной таблицей.

• В-третьих, необходимо подсчитать количество чисел, входящих в список. При повторе числа, следует каждое из них считать по отдельности.

• И, в-четвертых, полученную от сложения сумму необходимо разделить на количество чисел. В итоге мы получим результат, который и будет средним арифметическим числом этого ряда.


сред.арифмет

Для чего нужно среднее арифметическое

Среднее арифметическое может пригодиться не только для решения примеров и задач на уроках математики, но для других целей, необходимых в повседневной жизни человека. Такими целями может служить подсчет среднего арифметического для расчета среднего расхода финансов в месяц, или для подсчета времени, которое вы тратите на дорогу, также для того чтобы узнать посещаемость, производительность, скорость движения, урожайность и много другого.

Так, например, давайте попробуем рассчитать, сколько времени вы тратите на дорогу в школу. Идя в школу или возвращаясь, домой вы каждый раз тратите на дорогу разное время, так как когда вы спешите, то вы идете быстрее, и поэтому дорога занимает меньше времени. А вот, возвращаясь, домой вы можете идти не спеша, общаясь с одноклассниками, любуясь природой и поэтому времени на дорогу займет больше.

Поэтому, точно определить время, затраченное на дорогу у вас не получиться, но благодаря среднему арифметическому вы сможете приблизительно узнать время, которое вы тратите на дорогу.

Припустим, что в первый день после выходных, вы потратили на путь от дома до школу пятнадцать минут, на второй день ваш путь занял двадцать минут, в среду вы прошли расстояние за двадцать пять минут, за такое же время составил ваш путь и в четверг, а в пятницу вы никуда не торопились и возвращались целых пол часа.

Давайте найдем среднее арифметическое, прибавив время, за все пять дней. Итак,

15 + 20 + 25 + 25 + 30 = 115

Теперь разделим эту сумму на количество дней

115 : 5 = 23

Благодаря такому способу вы узнали, что путь от дома до школы вы приблизительно тратите двадцать три минуты своего времени.

Домашнее задание

1.Путем нехитрых вычислений найдите среднее арифметическое число посещаемости учеников вашего класса за неделю.

2. Найдите среднее арифметическое:


сред.арифмет

3. Решите задачу:


сред.арифмет