|
|
(7 промежуточных версий не показаны.) | Строка 1: |
Строка 1: |
- | <metakeywords>Гипермаркет Знаний - первый в мире!, Гипермаркет Знаний, Математика, 10 класс, урок, на Тему, Тригонометрические уравнения, функции</metakeywords> | + | <metakeywords>Гипермаркет Знаний - первый в мире!, Гипермаркет Знаний, Математика, 10 класс, уроки математики, тригонометрические уравнения, функции</metakeywords> |
| | | |
| '''[[Гипермаркет знаний - первый в мире!|Гипермаркет знаний]]>>[[Математика|Математика]]>>[[Математика 10 класс|Математика 10 класс]]>> Тригонометрические уравнения''' | | '''[[Гипермаркет знаний - первый в мире!|Гипермаркет знаний]]>>[[Математика|Математика]]>>[[Математика 10 класс|Математика 10 класс]]>> Тригонометрические уравнения''' |
- |
| |
- | <br>
| |
| | | |
| '''§ 20. Тригонометрические уравнения''' | | '''§ 20. Тригонометрические уравнения''' |
| | | |
- | <br>'''1. Простейшие тригонометрические уравнения''' | + | <h2>Простейшие тригонометрические уравнения</h2> |
| | | |
- | <br>Тригонометрическими уравнениями обычно называют '''[[Тригонометричні рівняння, нерівності та їх системи|уравнения]]''', в которых переменная содержится под знаками тригонометрических функций. К их числу прежде всего относятся простейшие тригонометрические уравнения, т.е. уравнения вида a [[Image:Alga331.jpg|240px|Задание]] — действительное число. К настоящему моменту мы знаем, что:<br>1) если | а | < 1, то решения '''[[Первые представления о решении тригонометрических уравнений|уравнения]]''' соз о:-а имеют вид:
| + | Все уравнения, которые содержат переменную под знаком тригонометрических функций, называются тригонометрическим уравнением. Если перед вами уравнения такого вида, как: |
| | | |
| + | sin x = a; cos x = a; tg x = a; ctg x = a, |
| | | |
| + | в котором x является его переменной, и a является действительным числом, то такие уравнения называются простейшими тригонометрическими уравнениями. |
| + | И если нам с вами известно, что в том случае, когда: |
| | | |
- | [[Image:Alga332.jpg|550px|Решение уравнения]] <br>Во всех перечисленных формулах подразумевается, что параметр (n, к и т.д.) принимает любые целочисленные значения [[Image:Alga333.jpg]]<br>К простейшим относят обычно и уравнения вида Т(кх + m)=а, где Т — знак какой-либо тригонометрической '''[[Тригонометричні функції числового аргументу. Шпаргалки|функции]]'''.<br>'''Пример 1.''' Решить уравнения:
| + | 1) | а | < 1, то решения уравнения cos о:-а приобретает такой вот вид: |
| | | |
- | [[Image:Alga334.jpg|320px|Задание]]<br>'''Решение:''' а) Введем новую переменную [[Image:Alga335.jpg|690px|Решение]]<br>Возвращаясь к переменной х, получаем: [[Image:Alga336.jpg|120px|Формула]] Осталось обе части этого равенства разделить почленно на 2; получим:
| + | <br>[[Image:Alga332.jpg|550px|Решение уравнения]] |
| | | |
- | [[Image:Alga337.jpg|120px|Формула]]<br>Заметим, что при наличии некоторого опыта можно не вводить промежуточную переменную t = 2х, а сразу переходить от уравнения [[Image:Alga338.jpg|320px|Уравнения]]<br>Именно так мы и будем действовать в дальнейшем.<br>б) Мы знаем, что решения уравнения соs t = а имеют вид:[[Image:Alga339.jpg|180px|Уравнение]] Для нашего примера это означает, что
| + | Во всех перечисленных формулах подразумевается, что параметр (n, к и т.д.) принимает любые целочисленные значения [[Image:Alga333.jpg]]<br> |
| | | |
- | [[Image:Alga340.jpg|690px|Задание]]<br>'''Пример 2.''' Найти те корни уравнения [[Image:Alga341.jpg|Уравнение]] которые принадлежат отрезку[0, п].<br>'''Решение.''' Сначала решим уравнение в общем виде: [[Image:Alga342.jpg|120px|Уравнение]] (см. пример 1а). Далее придадим параметру п последовательно значения 0,1, 2,..., -1, -2,... и подставим эти значения в общую формулу корней.
| + | Во всех этих формулах, которые перечислены выше, следует понимать, что параметр (n, к и т.д.) может принимать любые целочисленные значения. |
| | | |
- | <br>[[Image:Alga343.jpg|550px|Задание]]
| + | Также к простейшим уравнениям можно отнести и такие уравнения, которые имеют вид: |
| + | Т(кх + m)=а. В этом случае Т является знаком какой-нибудь тригонометрической функции. А теперь давайте попробуем это рассмотреть на примере решения уравнения. |
| | | |
- | <br>Это число не принадлежит заданному отрезку [0, п]. Тем более не будут принадлежать заданному отрезку те значения х, которые получаются из общей формулы при n = -2, -3,...<br>На рис. 94 представлена геометрическая интерпретация проведенных рассуждений.<br>
| + | '''Пример 1.''' Нам нужно решить данные уравнения: |
| | | |
- | [[Image:Alga344.jpg|320px|Задание]]<br>Итак, заданному отрезку [0, п] принадлежат те корни уравнения, которые получаются из общей формулы при следующих значениях параметра n: n = 0, n = 1. Эти корни таковы[[Image:Alga345.jpg]]<br>'''Ответ:''' [[Image:Alga345.jpg]]<br> | + | [[Image:Alga334.jpg|320px|Задание]] |
| | | |
- | '''Пример 3. '''Найти те корни уравнения [[Image:Alga346.jpg|120px|Формула]] которые принадлежат отрезку [[Image:Alga347.jpg]]<br>'''Решение:''' Сначала решим уравнение в общем виде: [[Image:Alga348.jpg|120px|Формула]] (см. пример 16). Далее придадим параметру п последовательно значения 0,1, 2,..., -1, -2,... и подставим эти значения в общую формулу корней.
| + | '''Решение:''' |
| | | |
- | <br>[[Image:Alga349.jpg|550px|Задание]]
| + | а) Для решения этого уравнения нам понадобиться в первую очередь ввести новую переменную: |
| | | |
- | поскольку оба они больше числа л. Тем более не будут принадлежать заданному отрезку те значения х, которые получаются из общей формулы при п = 3,4,...
| + | [[Image:Alga335.jpg|690px|Решение]] |
| | | |
- | [[Image:Alga350.jpg|550px|Задание]]<br>Не будут принадлежать заданному отрезку те значения х, которые получаются из общей формулы при п = -2, - 3,...<br>На рис. 95 представлена геометрическая интерпретация проведенных рассуждений.
| + | Далее, мы вернемся к переменной х, и соответственно получим: |
| | | |
- | [[Image:Alga351.jpg|320px|Задание]]<br>Итак, заданному отрезку [[Image:Alga352.jpg]] принадлежат следующие корни уравнения | + | [[Image:Alga336.jpg|120px|Формула]] |
| | | |
- | [[Image:Alga353.jpg|240px|Задание]]
| + | Теперь нам остается разделить почленно на два обе эти части, в итоге мы получим: |
| | | |
| + | [[Image:Alga337.jpg|120px|Формула]]<br> |
| | | |
| + | Но здесь обратите внимание на то, что приобретя некоторый опыт решения таких уравнений, появляется возможность без ввода промежуточной переменной t = 2х, сразу переходить от уравнения |
| | | |
- | '''2. Два основных метода решения тригонометрических уравнений'''
| + | <br>[[Image:Alga338.jpg|320px|Уравнения]] |
| | | |
- | Для решения тригонометрических уравнений чаще всего используются два метода: введения новой переменной и разложения на множители.
| + | Таким методом мы постараемся действовать и в дальнейшем. |
| | | |
- | Вернемся к материалу § 16. Там в примере 3 мы решили тригонометрическое уравнение [[Image:Alga354.jpg|120px|Задание]] Как мы это сделали? Ввели новую переменную z = sin t, переписали уравнение в виде<br>[[Image:Alga355.jpg|240px|Задание]] В результате мы получили два простых уравнения: [[Image:Alga356.jpg|120px|Задание]] Первое уравнение не имеет решений, а для второго нашли две серии решений:
| + | б) Нам с вами уже известно, что при решении такого уравнения, как соs t = а, оно приобретает вид: |
| | | |
- | [[Image:Alga357.jpg|120px|Задание]] и установили (см. § 18), что эти две серии можно объединить одной формулой [[Image:Alga358.jpg|120px|Задание]]<br>В том же § 16 в примере 4 мы решили тригонометрическое уравнение | + | [[Image:Alga339.jpg|180px|Уравнение]] |
| | | |
- | [[Image:Alga359.jpg|480px|Задание]]
| + | А это будет означать, что: |
| | | |
- | '''Пример 4. '''Решить уравнение | + | [[Image:Alga340.jpg|690px|Задание]]<br> |
| + | |
| + | Рассмотрим второй пример. |
| + | |
| + | '''Пример 2.''' Нам необходимо найти корни такого уравнения, как: |
| + | |
| + | <br>[[Image:Alga341.jpg|Уравнение]] |
| + | |
| + | Эти корни принадлежат отрезку[0, п]. |
| + | Приступим к решению. |
| + | |
| + | '''Решение.''' |
| + | |
| + | Внвчале мы с вами решим это уравнение в общем виде, руководствуясь примером 1а: |
| + | |
| + | [[Image:Alga342.jpg|120px|Уравнение]] |
| + | |
| + | Теперь попробуем последовательно придать параметру п, такие значения, как: 0,1, 2,..., -1, -2,... , а далее возьмем и подставим эти значения в общую формулу корней. |
| + | Смотрим, что у нас вышло: |
| + | |
| + | [[Image:Alga343.jpg|550px|Задание]] |
| + | |
| + | А получилось у нас то, что данное число не принадлежит заданному отрезку [0, п], также как и не принадлежать заданному отрезку и все те значения х, которые мы получили из общей формулы при n = -2, -3,... |
| + | Сейчас внимательно посмотрите на рис. 94. На нем мы видим геометрическую интерпретацию проведенных рассуждений.<br> |
| + | |
| + | <br>[[Image:Alga344.jpg|320px|Задание]]<br> |
| + | |
| + | Решив уравнение и рассмотрев рисунок, мы с вами пришли к выводу, что заданному отрезку [0, п] могут принадлежать корни уравнения, полученные из общей формулы, если параметр n имеет следующие значения: n = 0, n = 1. |
| + | |
| + | Вот как выглядят эти корни: |
| + | |
| + | [[Image:Alga345.jpg]] |
| + | |
| + | Следовательно, мы получаем такой ответ: |
| + | |
| + | [[Image:Alga345.jpg]] |
| + | |
| + | Перейдем к решению следующего примера. |
| + | |
| + | '''Пример 3.''' Дано уравнение |
| + | |
| + | [[Image:Alga346.jpg|120px|Формула]]<br> |
| + | |
| + | и нам нужно найти корни, принадлежащие отрезку |
| + | |
| + | [[Image:Alga347.jpg]]<br> |
| + | |
| + | Решение: В первую очередь нам нужно решить это уравнение в общем виде, взяв за пример решения задание 1б: |
| + | |
| + | [[Image:Alga348.jpg|120px|Формула]] |
| + | |
| + | Далее необходимо придать последовательно параметру n, значения 0,1, 2,..., -1, -2,... |
| + | Следующим нашим шагом нужно будет подставить все эти значения в общую формулу корней. |
| + | Смотрим, вот что у нас вышло: |
| + | |
| + | <br>[[Image:Alga349.jpg|550px|Задание]] |
| + | |
| + | У нас получились числа, которые больше числа n. И мы снова приходим к выводу, что значения х, которые мы получили из общей формулы при n = 3,4,..., тем более не могут принадлежать заданному отрезку. |
| + | |
| + | [[Image:Alga350.jpg|550px|Задание]] |
| + | |
| + | Так же, как и не могут принадлежать отрезку значения х, полученные из общей формулы, если n = -2, - 3,... |
| + | |
| + | Рассмотрите внимательно представленную на рис. 95 интерпретацию проведенных рассуждений. |
| + | |
| + | [[Image:Alga351.jpg|320px|Задание]] |
| + | |
| + | Из этого следует, что заданному отрезку |
| + | |
| + | [[Image:Alga352.jpg]] |
| + | |
| + | принадлежат такие корни уравнения, как: |
| + | |
| + | [[Image:Alga353.jpg|240px|Задание]] |
| + | |
| + | <h2>Два основных метода решения тригонометрических уравнений</h2> |
| + | |
| + | А сейчас мы с вами перейдем к рассмотрению основных методов решения тригонометрических уравнений. Для этих целей, как правило, используют: |
| + | |
| + | • во-первых, метод введения новой переменной;<br> |
| + | • во-вторых, способ разложения на множители.<br> |
| + | |
| + | А сейчас давайте вернемся немного назад и вспомним, как на третьем примере мы с вами решили тригонометрическое уравнение: |
| + | |
| + | [[Image:Alga354.jpg|120px|Задание]] |
| + | |
| + | Вспомним, что мы сделали в первую очередь. Во-первых, ввели новую переменную ю z = sin t, а потом переписали уравнение, которое приобрело такой вид:<br> |
| + | |
| + | [[Image:Alga355.jpg|240px|Задание]] |
| + | |
| + | В итоге, мы с вами получили два простых уравнения: |
| + | |
| + | [[Image:Alga356.jpg|120px|Задание]] |
| + | |
| + | Из сделанных ранее выводов мы увидели, что первое уравнение не имеет решения. А вот второе имеет их целых два: |
| + | |
| + | [[Image:Alga357.jpg|120px|Задание]] |
| + | |
| + | Далее мы увидели, что их можно объединить одной формулой |
| + | |
| + | [[Image:Alga358.jpg|120px|Задание]] |
| + | |
| + | Вспомните, как было решено это тригонометрическое уравнение: |
| + | |
| + | [[Image:Alga359.jpg|480px|Задание]] |
| + | |
| + | '''Пример 4.''' Решим следующее уравнение. |
| | | |
| [[Image:Alga360.jpg|120px|Задание]] | | [[Image:Alga360.jpg|120px|Задание]] |
| | | |
- | '''Решение.''' Поскольку [[Image:Alga361.jpg|80px|Задание]] есть смысл ввести новую переменную [[Image:Alga362.jpg|80px|Задание]] Это позволит переписать уравнение в более простом виде: [[Image:Alga363.jpg|80px|Задание]]<br>Имеем: | + | '''Решение.''' |
| | | |
- | [[Image:Alga364.jpg|120px|Задание]]
| + | Возьмем уравнение: |
| | | |
- | Возвращаясь к переменной х получаем два уравнения:
| + | [[Image:Alga361.jpg|80px|Задание]] |
| | | |
- | [[Image:Alga365.jpg|550px|Задание]]
| + | Попробуем в него ввести новую переменную: |
| | | |
- | Теперь поговорим о втором методе решения тригонометрических уравнений — методе разложения на множители. Смысл этого метода вам знаком: если уравнение f(х) =0 возможно преобразовать к виду
| + | [[Image:Alga362.jpg|80px|Задание]] |
| | | |
- | [[Image:Alga366.jpg]] то задача сводится к решению двух уравнений (обычно говорят — к решению совокупности уравнений):
| + | Смотрим, что это нам даст. А это нам позволит записать уравнение, которое имеет более простой вид: |
| | | |
- | [[Image:Alga367.jpg]]<br>'''Пример 5.''' Решить уравнение [[Image:Alga368.jpg|180px|Задание]]<br>'''Решение. '''Задача сводится к решению совокупности уравнений: | + | [[Image:Alga363.jpg|80px|Задание]] |
| | | |
- | [[Image:Alga369.jpg|180px|Задание]]<br>Из этих уравнений находим соответственно:
| + | Смотрим, что мы имеем: |
| | | |
- | [[Image:Alga370.jpg|320px|Задание]]<br>'''Пример 6.''' Решить уравнение [[Image:Alga371.jpg|240px|Задание]]. | + | [[Image:Alga364.jpg|120px|Задание]] |
| | | |
- | '''Решение.''' Имеем [[Image:Alga372.jpg|180px|Задание]] Значит, приходим к совокупности уравнений:
| + | Теперь вернемся к переменной х, ну и в итоге получим уже два уравнения: |
| | | |
- | [[Image:Alga373.jpg|550px|Задание]]<br>'''Замечание.''' Учтите, что переход от уравнения [[Image:Alga374.jpg|120px|Задание]] к совокупности уравнений: [[Image:Alga375.jpg|120px|Задание]] не всегда безопасен. Рассмотрим, например, уравнение [[Image:Alga376.jpg|120px|Задание]] Из уравнения tg x = 0 находим<br>х = пn; из уравнения sin x = 1 находим [[Image:Alga377.jpg|80px|Формула]] Но включить обе серии решений в ответ нельзя. Дело в том, что при значениях [[Image:Alga377.jpg|80px|Формула]] входящий в заданное уравнение множитель tg х не имеет смысла, т.е. значения<br>[[Image:Alga377.jpg|80px|Формула]] не принадлежат области определения уравнения (области допустимых значений уравнения — ОДЗ), это — посторонние корни.
| + | <br>[[Image:Alga365.jpg|550px|Задание]] |
| | | |
- | <br>'''3. Однородные тригонометрические уравнения'''
| + | С методом введения новой переменной мы уже выяснили, а сейчас попробуем решить тригонометрическое уравнение вторым способом, методом разложения на множители. |
| + | В принципе, с этим методом вы также знакомы. |
| | | |
- | Здесь мы познакомимся с довольно часто встречающимися на практике тригонометрическими уравнениями специального вида.
| + | Берем уравнение f(х) =0 и пробуем преобразовать его к такому виду: |
| | | |
- | '''Определение.''' Уравнение вида: [[Image:Alga378.jpg|120px|Формула]] называют однородным тригонометрическим уравнением первой степени; уравнение вида: [[Image:Alga379.jpg|240px|Формула]] называют однородным тригонометрическим уравнением второй степени.<br>Сначала поговорим о решении однородных тригонометрических уравнений первой степени, причем рассмотрим только самый общий случай, когда оба коэффициента а и Ъ отличны от нуля, так как, если а =0, уравнение принимает вид [[Image:Alga380.jpg|180px|Задание]] такое уравнение отдельного обсуждения не заслуживает; аналогично при Ь=0 получаем sin х =0, что тоже не требует отдельного обсуждения.<br>Итак, дано уравнение [[Image:Alga381.jpg|240px|Задание]] Разделив обе части уравнения почленно на соs x, получим:
| + | [[Image:Alga366.jpg]] |
| | | |
- | [[Image:Alga382.jpg|320px|Задание]]<br>В итоге приходим к простейшему тригонометрическому уравнению
| + | Для этого нам нужно решить два уравнения: |
| | | |
- | [[Image:Alga383.jpg|120px|Формула]]<br>'''Внимание!''' Вообще-то делить обе части уравнения на одно и то же выражение можно только в том случае, когда мы уверены, что это выражение нигде не обращается в нуль (на 0 делить нельзя). Уверены ли мы, что в нашем уравнении соз х отличен от нуля? Давайте проанализируем. Предположим, что соз х =0. Тогда однородное уравнение а sin х+Ь соз х=0 примет вида зтдг=0, т.е. зщх=0 (вы ведь не забыли, что коэффициент а отличен от нуля). Получается, что и соз х=0, и зш л: =0, а это невозможно, так как зтх и соззс обращаются в нуль в различных точках. Итак, в однородном тригонометрическом уравнении первой степени деление обеих частей уравнения насозх— вполне благополучная операция.<br>Уравнения вида а зт тх+Ь соз тх=0 тоже называют однородными тригонометрическими уравнениями первой степени. Для их решения обе части уравнения делят почленно на соз тх.<br>'''Пример 7. '''Решить уравнение 2 sin х-3соз х=0.<br>'''Решение.''' Разделив обе части уравнения почленно на соз х, получим: | + | [[Image:Alga367.jpg]] |
| | | |
- | [[Image:Alga384.jpg|240px|Задание]]
| + | '''Пример 5.''' В следующем примере решение задачи также сводится к решению совокупности уравнений |
| | | |
- | '''Пример 8. '''Решить уравнение 2x + соs2x =0.<br>'''Решение.''' Разделив обе части уравнения почленно на соs 2 x, получим:
| + | '''Решение.''' |
| | | |
- | [[Image:Alga385.jpg|320px|Задание]] | + | [[Image:Alga368.jpg|180px|Задание]] |
| | | |
- | Рассмотрим теперь однородное тригонометрическое уравнение второй степени:<br>[[Image:Alga386.jpg|240px|Формула]]<br>Если коэффициент а отличен от нуля, т.е. в уравнении содержится член sin 2 х с каким-то коэффициентом, отличным от нуля, то, рассуждая как и выше, нетрудно убедиться в том, что при интересующих нас значениях переменной сое хне обращается в нуль, а потому можно обе части уравнения разделить почленно на соs 2 х. Что это даст? Смотрите:
| + | И соответственно из этих уравнений у нас выходит: |
| | | |
- | [[Image:Alga387.jpg|320px|Задание]]<br>Это — квадратное уравнение относительно новой переменной z = tg х.<br>Пусть теперь в однородном тригонометрическом уравнении<br>[[Image:Alga388.jpg|240px|Задание]]<br>коэффициент а равен 0, т.е. отсутствует член sin<sup>2</sup> х. Тогда уравнение принимает вид:<br>[[Image:Alga389.jpg|240px|Задание]]<br>Это уравнение можно решить методом разложения на множители: | + | [[Image:Alga369.jpg|180px|Задание]] |
| | | |
- | [[Image:Alga390.jpg|240px|Задание]]<br>Получились два уравнения, которые мы с вами решать умеем. Аналогично обстоит дело и в случае, когда с =0, т.е. когда однородное уравнение имеет вид [[Image:Alga391.jpg]] (здесь можно вынести за скобки sin х).<br>Фактически мы выработали | + | [[Image:Alga370.jpg|320px|Задание]] |
| | | |
- | [[Image:Alga392.jpg|480px|Алгоритм решения уравнения]]<br>''<br>''
| + | '''Пример 6.''' Следующее уравнение решаем по такому же принципу. |
| | | |
- | ''А.Г. Мордкович Алгебра 10 класс''
| + | [[Image:Alga371.jpg|240px|Задание]] |
| | | |
- | <br>
| + | '''Решение.''' |
| | | |
- | [http://xvatit.com/relax/fun-videos/ '''<sub>Видео</sub>''']<sub>по математике [[Математика|скачать]], домашнее задание, учителям и школьникам на помощь [[Гипермаркет знаний - первый в мире!|онлайн]]</sub>
| + | Нам дано следующее уравнение: |
| | | |
- | '''<u>Содержание урока</u>'''
| + | <br>[[Image:Alga372.jpg|180px|Задание]] |
- | '''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] конспект урока '''
| + | |
- | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] опорный каркас
| + | |
- | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] презентация урока
| + | |
- | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] акселеративные методы
| + | |
- | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] интерактивные технологии
| + | |
- |
| + | |
- | '''<u>Практика</u>'''
| + | |
- | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] задачи и упражнения
| + | |
- | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] самопроверка
| + | |
- | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] практикумы, тренинги, кейсы, квесты
| + | |
- | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] домашние задания
| + | |
- | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] дискуссионные вопросы
| + | |
- | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] риторические вопросы от учеников
| + | |
- |
| + | |
- | '''<u>Иллюстрации</u>'''
| + | |
- | '''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] аудио-, видеоклипы и мультимедиа '''
| + | |
- | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] фотографии, картинки
| + | |
- | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] графики, таблицы, схемы
| + | |
- | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] юмор, анекдоты, приколы, комиксы
| + | |
- | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] притчи, поговорки, кроссворды, цитаты
| + | |
- |
| + | |
- | '''<u>Дополнения</u>'''
| + | |
- | '''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] рефераты'''
| + | |
- | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] статьи
| + | |
- | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] фишки для любознательных
| + | |
- | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] шпаргалки
| + | |
- | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] учебники основные и дополнительные
| + | |
- | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] словарь терминов
| + | |
- | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] прочие
| + | |
- |
| + | |
- | <u>Совершенствование учебников и уроков
| + | |
- | </u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] исправление ошибок в учебнике'''
| + | |
- | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] обновление фрагмента в учебнике
| + | |
- | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] элементы новаторства на уроке
| + | |
- | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] замена устаревших знаний новыми
| + | |
- |
| + | |
- | '''<u>Только для учителей</u>'''
| + | |
- | '''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] идеальные уроки '''
| + | |
- | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] календарный план на год
| + | |
- | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] методические рекомендации
| + | |
- | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] программы
| + | |
- | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] обсуждения
| + | |
- |
| + | |
- |
| + | |
- | '''<u>Интегрированные уроки</u>'''<u>
| + | |
- | </u>
| + | |
| | | |
- | <br>
| + | Следовательно, приходим к совокупности уравнений: |
| | | |
- | Если у вас есть исправления или предложения к данному уроку, [http://xvatit.com/index.php?do=feedback напишите нам].
| + | [[Image:Alga373.jpg|550px|Задание]] |
| | | |
- | Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - [http://xvatit.com/forum/ Образовательный форум].
| + | Замечание. Тут необходимо учесть то, что не всегда переход от уравнения: |
| + | |
| + | [[Image:Alga374.jpg|120px|Задание]] |
| + | |
| + | к совокупности уравнений: |
| + | |
| + | <br>[[Image:Alga375.jpg|120px|Задание]] |
| + | |
| + | Является безопасным. |
| + | |
| + | Например, берем уравнение: |
| + | |
| + | [[Image:Alga376.jpg|120px|Задание]] |
| + | |
| + | С помощью уравнения tg x = 0 находим х = пn, а из уравнения sin x = 1 находим |
| + | |
| + | [[Image:Alga377.jpg|80px|Формула]] |
| + | |
| + | Но здесь присутствует одно «но», так как включить обе серии решений в ответ нельзя. |
| + | |
| + | Так как при значении |
| + | |
| + | <br>[[Image:Alga377.jpg|80px|Формула]] |
| + | |
| + | Его множитель tg х не имеет смысла, другими словами он не имеет значения, так как не является областью определения уравнения, т.е. – это посторонние корни. |
| + | |
| + | <br>[[Image:Alga377.jpg|80px|Формула] |
| + | |
| + | <h2>Однородные тригонометрические уравнения</h2> |
| + | |
| + | Теперь давайте рассмотрим и тригонометрические уравнения, которые имеют специальный вид, но встречаются довольно таки часто. |
| + | |
| + | '''Определение.''' Уравнение, имеющее вид: |
| + | |
| + | [[Image:Alga378.jpg|120px|Формула]] |
| + | |
| + | называется однородным тригонометрическим уравнением 1-й степени; |
| + | а уравнение, которое выглядит так: |
| + | |
| + | <br>[[Image:Alga379.jpg|240px|Формула]] |
| + | |
| + | является однородным тригонометрическим уравнением 2-й степени. |
| + | |
| + | '''Уравнения 1-й степени''' |
| + | |
| + | Давайте рассмотрим общий случай решения тригонометрических уравнений, в котором коэффициенты а и b отличны от нуля, ведь при а =0, уравнение будет иметь вид |
| + | |
| + | [[Image:Alga380.jpg|180px|Задание]] |
| + | |
| + | а такое уравнение мы обсуждать не будем, так же, как и |
| + | при b=0 получаем sin х =0. |
| + | |
| + | Нам дано уравнение: |
| + | |
| + | [[Image:Alga381.jpg|240px|Задание]] |
| + | |
| + | Делим его части почленно на соs x, и получим: |
| + | |
| + | [[Image:Alga382.jpg|320px|Задание]] |
| + | |
| + | Вот мы и пришли к простейшему тригонометрическому уравнению |
| + | |
| + | [[Image:Alga383.jpg|120px|Формула]] |
| + | |
| + | Внимание! Следует запомнить, что делить обе части уравнения на одно и то же выражение можно только в случае, если это выражение нигде не обращается в нуль. А вот как в этом убедиться? |
| + | |
| + | '''Пример 7.''' Давайте решим уравнение 2 sin х - 3соs х = 0. |
| + | |
| + | Решение. Разделим почленно на соs х, обе части уравнения и у нас получится: |
| + | |
| + | [[Image:Alga384.jpg|240px|Задание]] |
| + | |
| + | Пример 8. Дано уравнение 2x + соs2x =0. |
| + | Решение. Разделим почленно на соs 2 x обе части уравнения и получим: |
| + | |
| + | [[Image:Alga385.jpg|320px|Задание]] |
| + | |
| + | Теперь приступим к однородному тригонометрическому уравнению 2-й степени: |
| + | |
| + | [[Image:Alga386.jpg|240px|Формула]] |
| + | |
| + | Если в данном уравнении содержится член sin 2 х, у которого коэффициент отличный от 0, то при интересующих нас значениях переменной соs х не обращается в нуль, и следовательно обе части уравнения можно разделить почленно на соs 2 х. И вот что мы получим: |
| + | |
| + | <br>[[Image:Alga387.jpg|320px|Задание]] |
| + | |
| + | А получили мы квадратное уравнение относительно новой переменной z = tg х. |
| + | Если в однородном тригонометрическом уравнении: |
| + | |
| + | [[Image:Alga388.jpg|240px|Задание]] |
| + | |
| + | коэффициент а = 0, т.е. отсутствует член sin2 х. Тогда мы получим такое уравнение: |
| + | |
| + | [[Image:Alga389.jpg|240px|Задание]] |
| + | |
| + | И решаем его методом разложения на множители: |
| + | |
| + | [[Image:Alga390.jpg|240px|Задание]] |
| + | |
| + | У нас получается два уравнения. Также обстоит дело, когда с = 0, т.е. когда однородное уравнение имеет вид, где sin х можно вынести за скобки. |
| + | |
| + | Фактически мы с вами получили |
| + | |
| + | [[Image:Alga392.jpg|480px|Алгоритм решения уравнения]]<br> |
| + | |
| + | ''А.Г. Мордкович Алгебра 10 класс'' |
Текущая версия на 07:23, 25 июня 2015
Гипермаркет знаний>>Математика>>Математика 10 класс>> Тригонометрические уравнения
§ 20. Тригонометрические уравнения
Простейшие тригонометрические уравнения
Все уравнения, которые содержат переменную под знаком тригонометрических функций, называются тригонометрическим уравнением. Если перед вами уравнения такого вида, как:
sin x = a; cos x = a; tg x = a; ctg x = a,
в котором x является его переменной, и a является действительным числом, то такие уравнения называются простейшими тригонометрическими уравнениями.
И если нам с вами известно, что в том случае, когда:
1) | а | < 1, то решения уравнения cos о:-а приобретает такой вот вид:
Во всех перечисленных формулах подразумевается, что параметр (n, к и т.д.) принимает любые целочисленные значения
Во всех этих формулах, которые перечислены выше, следует понимать, что параметр (n, к и т.д.) может принимать любые целочисленные значения.
Также к простейшим уравнениям можно отнести и такие уравнения, которые имеют вид:
Т(кх + m)=а. В этом случае Т является знаком какой-нибудь тригонометрической функции. А теперь давайте попробуем это рассмотреть на примере решения уравнения.
Пример 1. Нам нужно решить данные уравнения:
Решение:
а) Для решения этого уравнения нам понадобиться в первую очередь ввести новую переменную:
Далее, мы вернемся к переменной х, и соответственно получим:
Теперь нам остается разделить почленно на два обе эти части, в итоге мы получим:
Но здесь обратите внимание на то, что приобретя некоторый опыт решения таких уравнений, появляется возможность без ввода промежуточной переменной t = 2х, сразу переходить от уравнения
Таким методом мы постараемся действовать и в дальнейшем.
б) Нам с вами уже известно, что при решении такого уравнения, как соs t = а, оно приобретает вид:
А это будет означать, что:
Рассмотрим второй пример.
Пример 2. Нам необходимо найти корни такого уравнения, как:
Эти корни принадлежат отрезку[0, п].
Приступим к решению.
Решение.
Внвчале мы с вами решим это уравнение в общем виде, руководствуясь примером 1а:
Теперь попробуем последовательно придать параметру п, такие значения, как: 0,1, 2,..., -1, -2,... , а далее возьмем и подставим эти значения в общую формулу корней.
Смотрим, что у нас вышло:
А получилось у нас то, что данное число не принадлежит заданному отрезку [0, п], также как и не принадлежать заданному отрезку и все те значения х, которые мы получили из общей формулы при n = -2, -3,...
Сейчас внимательно посмотрите на рис. 94. На нем мы видим геометрическую интерпретацию проведенных рассуждений.
Решив уравнение и рассмотрев рисунок, мы с вами пришли к выводу, что заданному отрезку [0, п] могут принадлежать корни уравнения, полученные из общей формулы, если параметр n имеет следующие значения: n = 0, n = 1.
Вот как выглядят эти корни:
Следовательно, мы получаем такой ответ:
Перейдем к решению следующего примера.
Пример 3. Дано уравнение
и нам нужно найти корни, принадлежащие отрезку
Решение: В первую очередь нам нужно решить это уравнение в общем виде, взяв за пример решения задание 1б:
Далее необходимо придать последовательно параметру n, значения 0,1, 2,..., -1, -2,...
Следующим нашим шагом нужно будет подставить все эти значения в общую формулу корней.
Смотрим, вот что у нас вышло:
У нас получились числа, которые больше числа n. И мы снова приходим к выводу, что значения х, которые мы получили из общей формулы при n = 3,4,..., тем более не могут принадлежать заданному отрезку.
Так же, как и не могут принадлежать отрезку значения х, полученные из общей формулы, если n = -2, - 3,...
Рассмотрите внимательно представленную на рис. 95 интерпретацию проведенных рассуждений.
Из этого следует, что заданному отрезку
принадлежат такие корни уравнения, как:
Два основных метода решения тригонометрических уравнений
А сейчас мы с вами перейдем к рассмотрению основных методов решения тригонометрических уравнений. Для этих целей, как правило, используют:
• во-первых, метод введения новой переменной;
• во-вторых, способ разложения на множители.
А сейчас давайте вернемся немного назад и вспомним, как на третьем примере мы с вами решили тригонометрическое уравнение:
Вспомним, что мы сделали в первую очередь. Во-первых, ввели новую переменную ю z = sin t, а потом переписали уравнение, которое приобрело такой вид:
В итоге, мы с вами получили два простых уравнения:
Из сделанных ранее выводов мы увидели, что первое уравнение не имеет решения. А вот второе имеет их целых два:
Далее мы увидели, что их можно объединить одной формулой
Вспомните, как было решено это тригонометрическое уравнение:
Пример 4. Решим следующее уравнение.
Решение.
Возьмем уравнение:
Попробуем в него ввести новую переменную:
Смотрим, что это нам даст. А это нам позволит записать уравнение, которое имеет более простой вид:
Смотрим, что мы имеем:
Теперь вернемся к переменной х, ну и в итоге получим уже два уравнения:
С методом введения новой переменной мы уже выяснили, а сейчас попробуем решить тригонометрическое уравнение вторым способом, методом разложения на множители.
В принципе, с этим методом вы также знакомы.
Берем уравнение f(х) =0 и пробуем преобразовать его к такому виду:
Для этого нам нужно решить два уравнения:
Пример 5. В следующем примере решение задачи также сводится к решению совокупности уравнений
Решение.
И соответственно из этих уравнений у нас выходит:
Пример 6. Следующее уравнение решаем по такому же принципу.
Решение.
Нам дано следующее уравнение:
Следовательно, приходим к совокупности уравнений:
Замечание. Тут необходимо учесть то, что не всегда переход от уравнения:
к совокупности уравнений:
Является безопасным.
Например, берем уравнение:
С помощью уравнения tg x = 0 находим х = пn, а из уравнения sin x = 1 находим
Но здесь присутствует одно «но», так как включить обе серии решений в ответ нельзя.
Так как при значении
Его множитель tg х не имеет смысла, другими словами он не имеет значения, так как не является областью определения уравнения, т.е. – это посторонние корни.
[[Image:Alga377.jpg|80px|Формула]
Однородные тригонометрические уравнения
Теперь давайте рассмотрим и тригонометрические уравнения, которые имеют специальный вид, но встречаются довольно таки часто.
Определение. Уравнение, имеющее вид:
называется однородным тригонометрическим уравнением 1-й степени;
а уравнение, которое выглядит так:
является однородным тригонометрическим уравнением 2-й степени.
Уравнения 1-й степени
Давайте рассмотрим общий случай решения тригонометрических уравнений, в котором коэффициенты а и b отличны от нуля, ведь при а =0, уравнение будет иметь вид
а такое уравнение мы обсуждать не будем, так же, как и
при b=0 получаем sin х =0.
Нам дано уравнение:
Делим его части почленно на соs x, и получим:
Вот мы и пришли к простейшему тригонометрическому уравнению
Внимание! Следует запомнить, что делить обе части уравнения на одно и то же выражение можно только в случае, если это выражение нигде не обращается в нуль. А вот как в этом убедиться?
Пример 7. Давайте решим уравнение 2 sin х - 3соs х = 0.
Решение. Разделим почленно на соs х, обе части уравнения и у нас получится:
Пример 8. Дано уравнение 2x + соs2x =0.
Решение. Разделим почленно на соs 2 x обе части уравнения и получим:
Теперь приступим к однородному тригонометрическому уравнению 2-й степени:
Если в данном уравнении содержится член sin 2 х, у которого коэффициент отличный от 0, то при интересующих нас значениях переменной соs х не обращается в нуль, и следовательно обе части уравнения можно разделить почленно на соs 2 х. И вот что мы получим:
А получили мы квадратное уравнение относительно новой переменной z = tg х.
Если в однородном тригонометрическом уравнении:
коэффициент а = 0, т.е. отсутствует член sin2 х. Тогда мы получим такое уравнение:
И решаем его методом разложения на множители:
У нас получается два уравнения. Также обстоит дело, когда с = 0, т.е. когда однородное уравнение имеет вид, где sin х можно вынести за скобки.
Фактически мы с вами получили
А.Г. Мордкович Алгебра 10 класс
|