KNOWLEDGE HYPERMARKET


Тригонометрические уравнения
 
(7 промежуточных версий не показаны.)
Строка 1: Строка 1:
-
<metakeywords>Гипермаркет Знаний - первый в мире!, Гипермаркет Знаний, Математика, 10 класс,  урок, на Тему, Тригонометрические уравнения, функции</metakeywords>  
+
<metakeywords>Гипермаркет Знаний - первый в мире!, Гипермаркет Знаний, Математика, 10 класс,  уроки математики, тригонометрические уравнения, функции</metakeywords>  
'''[[Гипермаркет знаний - первый в мире!|Гипермаркет знаний]]&gt;&gt;[[Математика|Математика]]&gt;&gt;[[Математика 10 класс|Математика 10 класс]]&gt;&gt; Тригонометрические уравнения'''  
'''[[Гипермаркет знаний - первый в мире!|Гипермаркет знаний]]&gt;&gt;[[Математика|Математика]]&gt;&gt;[[Математика 10 класс|Математика 10 класс]]&gt;&gt; Тригонометрические уравнения'''  
-
 
-
<br>
 
'''§ 20. Тригонометрические уравнения'''
'''§ 20. Тригонометрические уравнения'''
-
<br>'''1. Простейшие тригонометрические уравнения'''
+
<h2>Простейшие тригонометрические уравнения</h2>
-
<br>Тригонометрическими уравнениями обычно называют '''[[Тригонометричні рівняння, нерівності та їх системи|уравнения]]''', в которых переменная содержится под знаками тригонометрических функций. К их числу прежде всего относятся простейшие тригонометрические уравнения, т.е. уравнения вида a [[Image:Alga331.jpg|240px|Задание]] — действительное число. К настоящему моменту мы знаем, что:<br>1)&nbsp;&nbsp;&nbsp; если | а | &lt; 1, то решения '''[[Первые представления о решении тригонометрических уравнений|уравнения]]''' соз о:-а имеют вид:  
+
Все уравнения, которые содержат переменную под знаком тригонометрических функций, называются тригонометрическим уравнением. Если перед вами уравнения такого вида, как:
 +
sin x = a; cos x = a; tg x = a; ctg x = a,
 +
в котором  x является его переменной, и a является действительным числом, то такие уравнения называются простейшими тригонометрическими уравнениями.
 +
И если нам с вами известно, что в том случае, когда:
-
[[Image:Alga332.jpg|550px|Решение уравнения]]&nbsp;&nbsp;&nbsp; <br>Во всех перечисленных формулах подразумевается, что параметр (n, к и т.д.) принимает любые целочисленные значения [[Image:Alga333.jpg]]<br>К простейшим относят обычно и уравнения вида Т(кх + m)=а, где Т — знак какой-либо тригонометрической '''[[Тригонометричні функції числового аргументу. Шпаргалки|функции]]'''.<br>'''Пример 1.''' Решить уравнения:  
+
1)  | а | < 1, то решения уравнения cos о:-а приобретает такой вот вид:
-
[[Image:Alga334.jpg|320px|Задание]]<br>'''Решение:''' а) Введем новую переменную [[Image:Alga335.jpg|690px|Решение]]<br>Возвращаясь к переменной х, получаем: [[Image:Alga336.jpg|120px|Формула]] Осталось обе части этого равенства разделить почленно на 2; получим:
+
<br>[[Image:Alga332.jpg|550px|Решение уравнения]]
-
[[Image:Alga337.jpg|120px|Формула]]<br>Заметим, что при наличии некоторого опыта можно не вводить промежуточную переменную t = 2х, а сразу переходить от уравнения [[Image:Alga338.jpg|320px|Уравнения]]<br>Именно так мы и будем действовать в дальнейшем.<br>б) Мы знаем, что решения уравнения соs t = а имеют вид:[[Image:Alga339.jpg|180px|Уравнение]] Для нашего примера это означает, что
+
Во всех перечисленных формулах подразумевается, что параметр (n, к и т.д.) принимает любые целочисленные значения [[Image:Alga333.jpg]]<br>
-
[[Image:Alga340.jpg|690px|Задание]]<br>'''Пример 2.''' Найти те корни уравнения [[Image:Alga341.jpg|Уравнение]] которые принадлежат отрезку[0, п].<br>'''Решение.''' Сначала решим уравнение в общем виде: [[Image:Alga342.jpg|120px|Уравнение]] (см. пример 1а). Далее придадим параметру п последовательно значения 0,1, 2,..., -1, -2,... и подставим эти значения в общую формулу корней.
+
Во всех этих формулах, которые перечислены выше, следует понимать, что параметр (n, к и т.д.) может принимать любые целочисленные значения.
-
<br>[[Image:Alga343.jpg|550px|Задание]]
+
Также к простейшим уравнениям можно отнести и такие уравнения, которые имеют вид:
 +
Т(кх + m)=а. В этом случае Т является знаком какой-нибудь тригонометрической функции.  А теперь давайте попробуем это рассмотреть на примере решения уравнения.
-
<br>Это число не принадлежит заданному отрезку [0, п]. Тем более не будут принадлежать заданному отрезку те значения х, которые получаются из общей формулы при n = -2, -3,...<br>На рис. 94 представлена геометрическая интерпретация проведенных рассуждений.<br>
+
'''Пример 1.''' Нам нужно решить данные уравнения:
-
[[Image:Alga344.jpg|320px|Задание]]<br>Итак, заданному отрезку [0, п] принадлежат те корни уравнения, которые получаются из общей формулы при следующих значениях параметра n: n = 0, n = 1. Эти корни таковы[[Image:Alga345.jpg]]<br>'''Ответ:''' [[Image:Alga345.jpg]]<br>
+
[[Image:Alga334.jpg|320px|Задание]]
-
'''Пример 3. '''Найти те корни уравнения [[Image:Alga346.jpg|120px|Формула]] которые принадлежат отрезку [[Image:Alga347.jpg]]<br>'''Решение:''' Сначала решим уравнение в общем виде: [[Image:Alga348.jpg|120px|Формула]] (см. пример 16). Далее придадим параметру п последовательно значения 0,1, 2,..., -1, -2,... и подставим эти значения в общую формулу корней.
+
'''Решение:'''  
-
<br>[[Image:Alga349.jpg|550px|Задание]]
+
а) Для решения этого уравнения нам понадобиться в первую очередь ввести новую переменную:
-
поскольку оба они больше числа л. Тем более не будут принадлежать заданному отрезку те значения х, которые получаются из общей формулы при п = 3,4,...  
+
[[Image:Alga335.jpg|690px|Решение]]
-
[[Image:Alga350.jpg|550px|Задание]]<br>Не будут принадлежать заданному отрезку те значения х, которые получаются из общей формулы при п = -2, - 3,...<br>На рис. 95 представлена геометрическая интерпретация проведенных рассуждений.
+
Далее, мы вернемся к переменной х, и соответственно получим:
-
[[Image:Alga351.jpg|320px|Задание]]<br>Итак, заданному отрезку [[Image:Alga352.jpg]] принадлежат следующие корни уравнения
+
[[Image:Alga336.jpg|120px|Формула]]
-
[[Image:Alga353.jpg|240px|Задание]]
+
Теперь нам остается разделить почленно на два обе эти части, в итоге мы получим:
 +
[[Image:Alga337.jpg|120px|Формула]]<br>
 +
Но здесь обратите внимание на то, что приобретя некоторый опыт решения таких уравнений, появляется возможность без ввода промежуточной переменной t = 2х, сразу переходить от уравнения
-
'''2. Два основных метода решения тригонометрических уравнений'''
+
<br>[[Image:Alga338.jpg|320px|Уравнения]]
-
Для решения тригонометрических уравнений чаще всего используются два метода: введения новой переменной и разложения на множители.
+
Таким методом мы постараемся действовать и в дальнейшем.
-
Вернемся к материалу § 16. Там в примере 3 мы решили тригонометрическое уравнение [[Image:Alga354.jpg|120px|Задание]] Как мы это сделали? Ввели новую переменную z = sin t, переписали уравнение в виде<br>[[Image:Alga355.jpg|240px|Задание]] В результате мы получили два простых уравнения: [[Image:Alga356.jpg|120px|Задание]] Первое уравнение не имеет решений, а для второго нашли две серии решений:  
+
б) Нам с вами уже известно, что при решении такого уравнения, как соs t = а, оно приобретает вид:
-
[[Image:Alga357.jpg|120px|Задание]]&nbsp; и установили (см. § 18), что эти две серии можно объединить одной формулой [[Image:Alga358.jpg|120px|Задание]]<br>В том же § 16 в примере 4 мы решили тригонометрическое уравнение
+
[[Image:Alga339.jpg|180px|Уравнение]]  
-
[[Image:Alga359.jpg|480px|Задание]]
+
А это будет означать, что:
-
'''Пример 4. '''Решить уравнение  
+
[[Image:Alga340.jpg|690px|Задание]]<br>
 +
 
 +
Рассмотрим второй пример.
 +
 
 +
'''Пример 2.''' Нам необходимо найти корни такого уравнения, как:
 +
 
 +
<br>[[Image:Alga341.jpg|Уравнение]]
 +
 
 +
Эти корни принадлежат отрезку[0, п].
 +
Приступим к решению.
 +
 
 +
'''Решение.'''
 +
 
 +
Внвчале мы с вами решим это уравнение в общем виде, руководствуясь примером 1а:
 +
 
 +
[[Image:Alga342.jpg|120px|Уравнение]]
 +
 
 +
Теперь попробуем последовательно придать параметру п, такие значения, как: 0,1, 2,..., -1, -2,... , а далее возьмем и  подставим эти значения в общую формулу корней.
 +
Смотрим, что у нас вышло:
 +
 
 +
[[Image:Alga343.jpg|550px|Задание]]
 +
 
 +
А получилось у нас то, что данное число не принадлежит заданному отрезку [0, п], также как и не принадлежать заданному отрезку и все те значения х, которые мы получили из общей формулы при n = -2, -3,...
 +
Сейчас внимательно посмотрите на рис. 94. На нем мы видим геометрическую интерпретацию проведенных рассуждений.<br>
 +
 
 +
<br>[[Image:Alga344.jpg|320px|Задание]]<br>
 +
 
 +
Решив уравнение и рассмотрев рисунок, мы с вами пришли к выводу, что заданному отрезку [0, п]  могут принадлежать корни уравнения, полученные из общей формулы, если параметр n имеет следующие значения: n = 0, n = 1.
 +
 
 +
Вот как выглядят эти корни:
 +
 
 +
[[Image:Alga345.jpg]]
 +
 
 +
Следовательно, мы получаем такой ответ:
 +
 
 +
[[Image:Alga345.jpg]]
 +
 
 +
Перейдем к решению следующего примера.
 +
 
 +
'''Пример 3.'''  Дано уравнение
 +
 
 +
[[Image:Alga346.jpg|120px|Формула]]<br>
 +
 
 +
и нам нужно найти корни, принадлежащие отрезку
 +
 
 +
[[Image:Alga347.jpg]]<br>
 +
 
 +
Решение: В первую очередь нам нужно решить это уравнение в общем виде, взяв за пример решения задание 1б:
 +
 
 +
[[Image:Alga348.jpg|120px|Формула]]
 +
 
 +
Далее необходимо придать последовательно параметру n,  значения 0,1, 2,..., -1, -2,...
 +
Следующим нашим шагом нужно будет подставить все эти значения в общую формулу корней.
 +
Смотрим, вот что у нас вышло:
 +
 
 +
<br>[[Image:Alga349.jpg|550px|Задание]]
 +
 
 +
У нас получились числа, которые больше числа n. И мы снова приходим к выводу, что значения х, которые мы получили из общей формулы при n = 3,4,..., тем более не могут принадлежать заданному отрезку.
 +
 
 +
[[Image:Alga350.jpg|550px|Задание]]
 +
 
 +
Так же, как и не могут принадлежать отрезку значения х, полученные из общей формулы, если n = -2, - 3,...
 +
 
 +
Рассмотрите внимательно представленную на рис. 95 интерпретацию проведенных рассуждений.
 +
 
 +
[[Image:Alga351.jpg|320px|Задание]]
 +
 
 +
Из этого следует, что заданному отрезку
 +
 
 +
[[Image:Alga352.jpg]]
 +
 
 +
принадлежат такие корни уравнения, как:
 +
 
 +
[[Image:Alga353.jpg|240px|Задание]]
 +
 
 +
<h2>Два основных метода решения тригонометрических уравнений</h2>
 +
 
 +
А сейчас мы с вами перейдем к рассмотрению основных методов решения тригонометрических уравнений. Для этих целей, как правило, используют:
 +
 
 +
• во-первых, метод введения новой переменной;<br>
 +
• во-вторых, способ разложения на множители.<br>
 +
 
 +
А сейчас давайте вернемся немного назад и вспомним, как на третьем примере мы с вами решили тригонометрическое уравнение:
 +
 
 +
[[Image:Alga354.jpg|120px|Задание]]
 +
 
 +
Вспомним, что мы сделали в первую очередь. Во-первых, ввели новую переменную ю z = sin t, а потом переписали уравнение, которое приобрело такой вид:<br>
 +
 
 +
[[Image:Alga355.jpg|240px|Задание]]
 +
 
 +
В итоге, мы с вами получили два простых уравнения:
 +
 
 +
[[Image:Alga356.jpg|120px|Задание]]
 +
 
 +
Из сделанных ранее выводов мы увидели, что первое уравнение не имеет решения. А вот второе имеет их целых два:
 +
 
 +
[[Image:Alga357.jpg|120px|Задание]]
 +
 
 +
Далее мы увидели, что их можно объединить одной формулой
 +
 
 +
[[Image:Alga358.jpg|120px|Задание]]
 +
 
 +
Вспомните, как было решено это тригонометрическое уравнение:
 +
 
 +
[[Image:Alga359.jpg|480px|Задание]]
 +
 
 +
'''Пример 4.''' Решим следующее уравнение.
[[Image:Alga360.jpg|120px|Задание]]  
[[Image:Alga360.jpg|120px|Задание]]  
-
'''Решение.''' Поскольку [[Image:Alga361.jpg|80px|Задание]] есть смысл ввести новую переменную [[Image:Alga362.jpg|80px|Задание]]&nbsp; Это позволит переписать уравнение в более простом виде: [[Image:Alga363.jpg|80px|Задание]]<br>Имеем:
+
'''Решение.'''  
-
[[Image:Alga364.jpg|120px|Задание]]
+
Возьмем уравнение:
-
Возвращаясь к переменной х получаем два уравнения:  
+
[[Image:Alga361.jpg|80px|Задание]]
-
[[Image:Alga365.jpg|550px|Задание]]
+
Попробуем в него ввести новую переменную:
-
Теперь поговорим о втором методе решения тригонометрических уравнений — методе разложения на множители. Смысл этого метода вам знаком: если уравнение f(х) =0 возможно преобразовать к виду
+
[[Image:Alga362.jpg|80px|Задание]]
-
[[Image:Alga366.jpg]] то задача сводится к решению двух уравнений (обычно говорят — к решению совокупности уравнений):  
+
Смотрим, что это нам даст. А это нам позволит записать уравнение, которое имеет более простой вид:
-
[[Image:Alga367.jpg]]<br>'''Пример 5.''' Решить уравнение&nbsp;&nbsp;&nbsp;[[Image:Alga368.jpg|180px|Задание]]<br>'''Решение. '''Задача сводится к решению совокупности уравнений:
+
[[Image:Alga363.jpg|80px|Задание]]
-
[[Image:Alga369.jpg|180px|Задание]]<br>Из этих уравнений находим соответственно:  
+
Смотрим, что мы имеем:
-
[[Image:Alga370.jpg|320px|Задание]]<br>'''Пример 6.''' Решить уравнение [[Image:Alga371.jpg|240px|Задание]].
+
[[Image:Alga364.jpg|120px|Задание]]
-
'''Решение.''' Имеем [[Image:Alga372.jpg|180px|Задание]] Значит, приходим к совокупности уравнений:  
+
Теперь вернемся к переменной х, ну и в итоге получим уже два уравнения:
-
[[Image:Alga373.jpg|550px|Задание]]<br>'''Замечание.''' Учтите, что переход от уравнения [[Image:Alga374.jpg|120px|Задание]] к совокупности уравнений: [[Image:Alga375.jpg|120px|Задание]] не всегда безопасен. Рассмотрим, например, уравнение [[Image:Alga376.jpg|120px|Задание]] Из уравнения tg x = 0 находим<br>х = пn; из уравнения sin x = 1 находим [[Image:Alga377.jpg|80px|Формула]] Но включить обе серии решений в ответ нельзя. Дело в том, что при значениях [[Image:Alga377.jpg|80px|Формула]] входящий в заданное уравнение множитель tg х не имеет смысла, т.е. значения<br>[[Image:Alga377.jpg|80px|Формула]] не принадлежат области определения уравнения (области допустимых значений уравнения — ОДЗ), это — посторонние корни.
+
<br>[[Image:Alga365.jpg|550px|Задание]]
-
<br>'''3. Однородные тригонометрические уравнения'''
+
С методом введения новой переменной мы уже выяснили, а сейчас попробуем решить тригонометрическое уравнение вторым способом, методом разложения на множители.
 +
В принципе, с этим методом вы также знакомы.  
-
Здесь мы познакомимся с довольно часто встречающимися на практике тригонометрическими уравнениями специального вида.
+
Берем уравнение f(х) =0 и пробуем преобразовать его к такому виду:
-
'''Определение.''' Уравнение вида: [[Image:Alga378.jpg|120px|Формула]] называют однородным тригонометрическим уравнением первой степени; уравнение вида: [[Image:Alga379.jpg|240px|Формула]] называют однородным тригонометрическим уравнением второй степени.<br>Сначала поговорим о решении однородных тригонометрических уравнений первой степени, причем рассмотрим только самый общий случай, когда оба коэффициента а и Ъ отличны от нуля, так как, если а =0, уравнение принимает вид [[Image:Alga380.jpg|180px|Задание]] такое уравнение отдельного обсуждения не заслуживает; аналогично при Ь=0 получаем sin х =0, что тоже не требует отдельного обсуждения.<br>Итак, дано уравнение [[Image:Alga381.jpg|240px|Задание]] Разделив обе части уравнения почленно на соs x, получим:
+
[[Image:Alga366.jpg]]
-
[[Image:Alga382.jpg|320px|Задание]]<br>В итоге приходим к простейшему тригонометрическому уравнению
+
Для этого нам нужно решить два уравнения:
-
[[Image:Alga383.jpg|120px|Формула]]<br>'''Внимание!''' Вообще-то делить обе части уравнения на одно и то же выражение можно только в том случае, когда мы уверены, что это выражение нигде не обращается в нуль (на 0 делить нельзя). Уверены ли мы, что в нашем уравнении соз х отличен от нуля? Давайте проанализируем. Предположим, что соз х =0. Тогда однородное уравнение а sin х+Ь соз х=0 примет вида зтдг=0, т.е. зщх=0 (вы ведь не забыли, что коэффициент а отличен от нуля). Получается, что и соз х=0, и зш л: =0, а это невозможно, так как зтх и соззс обращаются в нуль в различных точках. Итак, в однородном тригонометрическом уравнении первой степени деление обеих частей уравнения насозх— вполне благополучная операция.<br>Уравнения вида а зт тх+Ь соз тх=0 тоже называют однородными тригонометрическими уравнениями первой степени. Для их решения обе части уравнения делят почленно на соз тх.<br>'''Пример 7. '''Решить уравнение 2 sin х-3соз х=0.<br>'''Решение.''' Разделив обе части уравнения почленно на соз х, получим:
+
[[Image:Alga367.jpg]]
-
[[Image:Alga384.jpg|240px|Задание]]
+
'''Пример 5.''' В следующем примере решение задачи также  сводится к решению совокупности уравнений
-
'''Пример 8. '''Решить уравнение 2x + соs2x =0.<br>'''Решение.''' Разделив обе части уравнения почленно на соs 2 x, получим:
+
'''Решение.'''  
-
[[Image:Alga385.jpg|320px|Задание]]  
+
[[Image:Alga368.jpg|180px|Задание]]
-
Рассмотрим теперь однородное тригонометрическое уравнение второй степени:<br>[[Image:Alga386.jpg|240px|Формула]]<br>Если коэффициент а отличен от нуля, т.е. в уравнении содержится член sin 2 х с каким-то коэффициентом, отличным от нуля, то, рассуждая как и выше, нетрудно убедиться в том, что при интересующих нас значениях переменной сое хне обращается в нуль, а потому можно обе части уравнения разделить почленно на соs 2 х. Что это даст? Смотрите:  
+
И соответственно из этих уравнений у нас выходит:
-
[[Image:Alga387.jpg|320px|Задание]]<br>Это — квадратное уравнение относительно новой переменной z = tg х.<br>Пусть теперь в однородном тригонометрическом уравнении<br>[[Image:Alga388.jpg|240px|Задание]]<br>коэффициент а равен 0, т.е. отсутствует член sin<sup>2</sup> х. Тогда уравнение принимает вид:<br>[[Image:Alga389.jpg|240px|Задание]]<br>Это уравнение можно решить методом разложения на множители:
+
[[Image:Alga369.jpg|180px|Задание]]
-
[[Image:Alga390.jpg|240px|Задание]]<br>Получились два уравнения, которые мы с вами решать умеем. Аналогично обстоит дело и в случае, когда с =0, т.е. когда однородное уравнение имеет вид [[Image:Alga391.jpg]]&nbsp; (здесь можно вынести за скобки sin х).<br>Фактически мы выработали
+
[[Image:Alga370.jpg|320px|Задание]]
-
[[Image:Alga392.jpg|480px|Алгоритм решения уравнения]]<br>''<br>''
+
'''Пример 6.''' Следующее уравнение решаем по такому же принципу.
-
''А.Г. Мордкович Алгебра 10 класс''
+
[[Image:Alga371.jpg|240px|Задание]]
-
<br>
+
'''Решение.'''
-
[http://xvatit.com/relax/fun-videos/ '''<sub>Видео</sub>''']<sub>по математике [[Математика|скачать]], домашнее задание, учителям и школьникам на помощь [[Гипермаркет знаний - первый в мире!|онлайн]]</sub>
+
Нам дано следующее уравнение:
-
'''<u>Содержание урока</u>'''
+
<br>[[Image:Alga372.jpg|180px|Задание]]  
-
'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] конспект урока                      '''
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] опорный каркас 
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] презентация урока
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] акселеративные методы
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] интерактивные технологии
+
-
+
-
'''<u>Практика</u>'''
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] задачи и упражнения
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] самопроверка
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] практикумы, тренинги, кейсы, квесты
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] домашние задания
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] дискуссионные вопросы
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] риторические вопросы от учеников
+
-
+
-
'''<u>Иллюстрации</u>'''
+
-
'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] аудио-, видеоклипы и мультимедиа '''
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] фотографии, картинки
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] графики, таблицы, схемы
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] юмор, анекдоты, приколы, комиксы
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] притчи, поговорки, кроссворды, цитаты
+
-
+
-
'''<u>Дополнения</u>'''
+
-
'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] рефераты'''
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] статьи
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] фишки для любознательных
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] шпаргалки
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] учебники основные и дополнительные
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] словарь терминов                         
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] прочие
+
-
+
-
<u>Совершенствование учебников и уроков
+
-
</u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] исправление ошибок в учебнике'''
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] обновление фрагмента в учебнике
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] элементы новаторства на уроке
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] замена устаревших знаний новыми
+
-
+
-
'''<u>Только для учителей</u>'''
+
-
'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] идеальные уроки '''
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] календарный план на год 
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] методические рекомендации 
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] программы
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] обсуждения
+
-
+
-
+
-
'''<u>Интегрированные уроки</u>'''<u>
+
-
</u>
+
-
<br>
+
Следовательно, приходим к совокупности уравнений:
-
Если у вас есть исправления или предложения к данному уроку, [http://xvatit.com/index.php?do=feedback напишите нам].
+
[[Image:Alga373.jpg|550px|Задание]]
-
Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - [http://xvatit.com/forum/ Образовательный форум].
+
Замечание. Тут необходимо учесть то, что не всегда переход от уравнения:
 +
 
 +
[[Image:Alga374.jpg|120px|Задание]]
 +
 
 +
к совокупности уравнений:
 +
 
 +
<br>[[Image:Alga375.jpg|120px|Задание]]
 +
 
 +
Является безопасным.
 +
 
 +
Например, берем уравнение:
 +
 
 +
[[Image:Alga376.jpg|120px|Задание]]
 +
 
 +
С помощью уравнения tg x = 0 находим х = пn, а из уравнения sin x = 1 находим
 +
 
 +
[[Image:Alga377.jpg|80px|Формула]]
 +
 
 +
Но здесь присутствует одно «но», так как включить обе серии решений в ответ нельзя.
 +
 
 +
Так как при значении
 +
 
 +
<br>[[Image:Alga377.jpg|80px|Формула]]
 +
 
 +
Его множитель tg х не имеет смысла, другими словами он не имеет значения, так как не является областью определения уравнения, т.е. – это посторонние корни.
 +
 
 +
<br>[[Image:Alga377.jpg|80px|Формула]
 +
 
 +
<h2>Однородные тригонометрические уравнения</h2>
 +
 
 +
Теперь давайте рассмотрим и тригонометрические уравнения, которые имеют специальный вид, но встречаются довольно таки часто.
 +
 
 +
'''Определение.''' Уравнение, имеющее вид:
 +
 
 +
[[Image:Alga378.jpg|120px|Формула]]
 +
 
 +
называется однородным тригонометрическим уравнением 1-й степени;
 +
а уравнение, которое выглядит так:
 +
 
 +
<br>[[Image:Alga379.jpg|240px|Формула]]
 +
 
 +
является однородным тригонометрическим уравнением 2-й степени.
 +
 
 +
'''Уравнения 1-й степени'''
 +
 
 +
Давайте рассмотрим общий случай решения тригонометрических уравнений, в котором коэффициенты а и b отличны от нуля, ведь при а =0, уравнение будет иметь вид
 +
 
 +
[[Image:Alga380.jpg|180px|Задание]]
 +
 
 +
а такое уравнение мы обсуждать не будем, так же, как и
 +
при b=0 получаем sin х =0.
 +
 
 +
Нам дано уравнение:
 +
 
 +
[[Image:Alga381.jpg|240px|Задание]]
 +
 
 +
Делим его части почленно на соs x, и получим:
 +
 
 +
[[Image:Alga382.jpg|320px|Задание]]
 +
 
 +
Вот мы и пришли к простейшему тригонометрическому уравнению
 +
 
 +
[[Image:Alga383.jpg|120px|Формула]]
 +
 
 +
Внимание! Следует запомнить, что делить обе части уравнения на одно и то же выражение можно только в случае, если это выражение нигде не обращается в нуль. А вот как в этом убедиться?
 +
 
 +
'''Пример 7.''' Давайте решим уравнение 2 sin х - 3соs х = 0.
 +
 
 +
Решение. Разделим почленно на соs х, обе части уравнения и у нас получится:
 +
 
 +
[[Image:Alga384.jpg|240px|Задание]]
 +
 
 +
Пример 8. Дано уравнение 2x + соs2x =0.
 +
Решение. Разделим почленно на соs 2 x обе части уравнения и получим:
 +
 
 +
[[Image:Alga385.jpg|320px|Задание]]
 +
 
 +
Теперь приступим к однородному тригонометрическому уравнению 2-й степени:
 +
 
 +
[[Image:Alga386.jpg|240px|Формула]]
 +
 
 +
Если в данном уравнении содержится член sin 2 х, у которого коэффициент отличный от 0, то при интересующих нас значениях переменной соs х не обращается в нуль, и следовательно обе части уравнения можно разделить почленно на соs 2 х. И вот что мы получим:
 +
 
 +
<br>[[Image:Alga387.jpg|320px|Задание]]
 +
 
 +
А получили мы квадратное уравнение относительно новой переменной z = tg х.
 +
Если в однородном тригонометрическом уравнении:
 +
 
 +
[[Image:Alga388.jpg|240px|Задание]]
 +
 
 +
коэффициент а = 0, т.е. отсутствует член sin2 х. Тогда мы получим такое уравнение:
 +
 
 +
[[Image:Alga389.jpg|240px|Задание]]
 +
 
 +
И решаем его методом разложения на множители:
 +
 
 +
[[Image:Alga390.jpg|240px|Задание]]
 +
 
 +
У нас получается два уравнения. Также обстоит дело, когда с = 0, т.е. когда однородное уравнение имеет вид, где sin х можно вынести за скобки.
 +
 
 +
Фактически мы с вами получили
 +
 
 +
[[Image:Alga392.jpg|480px|Алгоритм решения уравнения]]<br>
 +
 
 +
''А.Г. Мордкович Алгебра 10 класс''

Текущая версия на 07:23, 25 июня 2015

Гипермаркет знаний>>Математика>>Математика 10 класс>> Тригонометрические уравнения

§ 20. Тригонометрические уравнения

Простейшие тригонометрические уравнения

Все уравнения, которые содержат переменную под знаком тригонометрических функций, называются тригонометрическим уравнением. Если перед вами уравнения такого вида, как:

sin x = a; cos x = a; tg x = a; ctg x = a,

в котором x является его переменной, и a является действительным числом, то такие уравнения называются простейшими тригонометрическими уравнениями. И если нам с вами известно, что в том случае, когда:

1) | а | < 1, то решения уравнения cos о:-а приобретает такой вот вид:


Решение уравнения

Во всех перечисленных формулах подразумевается, что параметр (n, к и т.д.) принимает любые целочисленные значения Alga333.jpg

Во всех этих формулах, которые перечислены выше, следует понимать, что параметр (n, к и т.д.) может принимать любые целочисленные значения.

Также к простейшим уравнениям можно отнести и такие уравнения, которые имеют вид: Т(кх + m)=а. В этом случае Т является знаком какой-нибудь тригонометрической функции. А теперь давайте попробуем это рассмотреть на примере решения уравнения.

Пример 1. Нам нужно решить данные уравнения:

Задание

Решение:

а) Для решения этого уравнения нам понадобиться в первую очередь ввести новую переменную:

Решение

Далее, мы вернемся к переменной х, и соответственно получим:

Формула

Теперь нам остается разделить почленно на два обе эти части, в итоге мы получим:

Формула

Но здесь обратите внимание на то, что приобретя некоторый опыт решения таких уравнений, появляется возможность без ввода промежуточной переменной t = 2х, сразу переходить от уравнения


Уравнения

Таким методом мы постараемся действовать и в дальнейшем.

б) Нам с вами уже известно, что при решении такого уравнения, как соs t = а, оно приобретает вид:

Уравнение

А это будет означать, что:

Задание

Рассмотрим второй пример.

Пример 2. Нам необходимо найти корни такого уравнения, как:


Уравнение

Эти корни принадлежат отрезку[0, п]. Приступим к решению.

Решение.

Внвчале мы с вами решим это уравнение в общем виде, руководствуясь примером 1а:

Уравнение

Теперь попробуем последовательно придать параметру п, такие значения, как: 0,1, 2,..., -1, -2,... , а далее возьмем и подставим эти значения в общую формулу корней. Смотрим, что у нас вышло:

Задание

А получилось у нас то, что данное число не принадлежит заданному отрезку [0, п], также как и не принадлежать заданному отрезку и все те значения х, которые мы получили из общей формулы при n = -2, -3,... Сейчас внимательно посмотрите на рис. 94. На нем мы видим геометрическую интерпретацию проведенных рассуждений.


Задание

Решив уравнение и рассмотрев рисунок, мы с вами пришли к выводу, что заданному отрезку [0, п] могут принадлежать корни уравнения, полученные из общей формулы, если параметр n имеет следующие значения: n = 0, n = 1.

Вот как выглядят эти корни:

Alga345.jpg

Следовательно, мы получаем такой ответ:

Alga345.jpg

Перейдем к решению следующего примера.

Пример 3. Дано уравнение

Формула

и нам нужно найти корни, принадлежащие отрезку

Alga347.jpg

Решение: В первую очередь нам нужно решить это уравнение в общем виде, взяв за пример решения задание 1б:

Формула

Далее необходимо придать последовательно параметру n, значения 0,1, 2,..., -1, -2,... Следующим нашим шагом нужно будет подставить все эти значения в общую формулу корней. Смотрим, вот что у нас вышло:


Задание

У нас получились числа, которые больше числа n. И мы снова приходим к выводу, что значения х, которые мы получили из общей формулы при n = 3,4,..., тем более не могут принадлежать заданному отрезку.

Задание

Так же, как и не могут принадлежать отрезку значения х, полученные из общей формулы, если n = -2, - 3,...

Рассмотрите внимательно представленную на рис. 95 интерпретацию проведенных рассуждений.

Задание

Из этого следует, что заданному отрезку

Alga352.jpg

принадлежат такие корни уравнения, как:

Задание

Два основных метода решения тригонометрических уравнений

А сейчас мы с вами перейдем к рассмотрению основных методов решения тригонометрических уравнений. Для этих целей, как правило, используют:

• во-первых, метод введения новой переменной;
• во-вторых, способ разложения на множители.

А сейчас давайте вернемся немного назад и вспомним, как на третьем примере мы с вами решили тригонометрическое уравнение:

Задание

Вспомним, что мы сделали в первую очередь. Во-первых, ввели новую переменную ю z = sin t, а потом переписали уравнение, которое приобрело такой вид:

Задание

В итоге, мы с вами получили два простых уравнения:

Задание

Из сделанных ранее выводов мы увидели, что первое уравнение не имеет решения. А вот второе имеет их целых два:

Задание

Далее мы увидели, что их можно объединить одной формулой

Задание

Вспомните, как было решено это тригонометрическое уравнение:

Задание

Пример 4. Решим следующее уравнение.

Задание

Решение.

Возьмем уравнение:

Задание

Попробуем в него ввести новую переменную:

Задание

Смотрим, что это нам даст. А это нам позволит записать уравнение, которое имеет более простой вид:

Задание

Смотрим, что мы имеем:

Задание

Теперь вернемся к переменной х, ну и в итоге получим уже два уравнения:


Задание

С методом введения новой переменной мы уже выяснили, а сейчас попробуем решить тригонометрическое уравнение вторым способом, методом разложения на множители. В принципе, с этим методом вы также знакомы.

Берем уравнение f(х) =0 и пробуем преобразовать его к такому виду:

Alga366.jpg

Для этого нам нужно решить два уравнения:

Alga367.jpg

Пример 5. В следующем примере решение задачи также сводится к решению совокупности уравнений

Решение.

Задание

И соответственно из этих уравнений у нас выходит:

Задание

Задание

Пример 6. Следующее уравнение решаем по такому же принципу.

Задание

Решение.

Нам дано следующее уравнение:


Задание

Следовательно, приходим к совокупности уравнений:

Задание

Замечание. Тут необходимо учесть то, что не всегда переход от уравнения:

Задание

к совокупности уравнений:


Задание

Является безопасным.

Например, берем уравнение:

Задание

С помощью уравнения tg x = 0 находим х = пn, а из уравнения sin x = 1 находим

Формула

Но здесь присутствует одно «но», так как включить обе серии решений в ответ нельзя.

Так как при значении


Формула

Его множитель tg х не имеет смысла, другими словами он не имеет значения, так как не является областью определения уравнения, т.е. – это посторонние корни.


[[Image:Alga377.jpg|80px|Формула]

Однородные тригонометрические уравнения

Теперь давайте рассмотрим и тригонометрические уравнения, которые имеют специальный вид, но встречаются довольно таки часто.

Определение. Уравнение, имеющее вид:

Формула

называется однородным тригонометрическим уравнением 1-й степени; а уравнение, которое выглядит так:


Формула

является однородным тригонометрическим уравнением 2-й степени.

Уравнения 1-й степени

Давайте рассмотрим общий случай решения тригонометрических уравнений, в котором коэффициенты а и b отличны от нуля, ведь при а =0, уравнение будет иметь вид

Задание

а такое уравнение мы обсуждать не будем, так же, как и при b=0 получаем sin х =0.

Нам дано уравнение:

Задание

Делим его части почленно на соs x, и получим:

Задание

Вот мы и пришли к простейшему тригонометрическому уравнению

Формула

Внимание! Следует запомнить, что делить обе части уравнения на одно и то же выражение можно только в случае, если это выражение нигде не обращается в нуль. А вот как в этом убедиться?

Пример 7. Давайте решим уравнение 2 sin х - 3соs х = 0.

Решение. Разделим почленно на соs х, обе части уравнения и у нас получится:

Задание

Пример 8. Дано уравнение 2x + соs2x =0. Решение. Разделим почленно на соs 2 x обе части уравнения и получим:

Задание

Теперь приступим к однородному тригонометрическому уравнению 2-й степени:

Формула

Если в данном уравнении содержится член sin 2 х, у которого коэффициент отличный от 0, то при интересующих нас значениях переменной соs х не обращается в нуль, и следовательно обе части уравнения можно разделить почленно на соs 2 х. И вот что мы получим:


Задание

А получили мы квадратное уравнение относительно новой переменной z = tg х. Если в однородном тригонометрическом уравнении:

Задание

коэффициент а = 0, т.е. отсутствует член sin2 х. Тогда мы получим такое уравнение:

Задание

И решаем его методом разложения на множители:

Задание

У нас получается два уравнения. Также обстоит дело, когда с = 0, т.е. когда однородное уравнение имеет вид, где sin х можно вынести за скобки.

Фактически мы с вами получили

Алгоритм решения уравнения

А.Г. Мордкович Алгебра 10 класс