| 
 
 
			
			
			
			
		
		|   |  |  | Строка 5: | Строка 5: |  |  | <br>   |  | <br>   |  |  |  |  |  |  | - |                                             '''ПРАВИЛЬНЫЕ МНОГОУГОЛЬНИКИ'''<br> | + |                                             '''ПРАВИЛЬНЫЕ МНОГОУГОЛЬНИКИ'''<br>   |  |  |  |  |  |  | - | <br>'''''Выпуклый многоугольник называется правильным, если у него все стороны равны и все углы равны.''''' | + | <br>'''''Выпуклый многоугольник называется правильным, если у него все стороны равны и все углы равны.'''''   |  |  |  |  |  |  | - | Многоугольник называется '''''вписанным в окружность''''', если все его вершины лежат на некоторой окружности. Многоугольник называется '''''описанным около окружности''''', если все его стороны касаются некоторой окружности.<br> | + | Многоугольник называется '''''вписанным в окружность''''', если все его вершины лежат на некоторой окружности. Многоугольник называется '''''описанным около окружности''''', если все его стороны касаются некоторой окружности.<br>   |  |  |  |  |  |  | - | Теорема 13.3. '''''Правильный выпуклый многоугольник является вписанным в окружность и описанным около окружности.'''''<br> | + | Теорема 13.3. '''''Правильный выпуклый многоугольник является вписанным в окружность и описанным около окружности.'''''<br>   |  |  |  |  |  |  | - | Доказательство. Пусть А и В — две соседние вершины правильного многоугольника (рис. 280). Проведем биссектрисы углов многоугольника из вершин А и В. Пусть О — точка их пересечения. Треугольник АОВ равнобедренный с основанием АВ и углами при основании, равными    [[Image:24-06-76.jpg]]   где [[Image:24-06-52.jpg]] —угол многоугольника.<br> | + | Доказательство. Пусть А и В — две соседние вершины правильного многоугольника (рис. 280). Проведем биссектрисы углов многоугольника из вершин А и В. Пусть О — точка их пересечения. Треугольник АОВ равнобедренный с основанием АВ и углами при основании, равными    [[Image:24-06-76.jpg]]   где [[Image:24-06-52.jpg]] —угол многоугольника.<br>   |  |  |  |  |  |  | - | Соединим точку О с вершиной С, соседней с В. Треугольники АВО и СВО равны по первому признаку равенства треугольников. У них сторона ОВ общая, стороны АВ и ВС равны как стороны многоугольника, а углы при вершине В равны Из равенства треугольников следует, что треугольник ОВС равнобедренный с углом при вершине С, равным [[Image:24-06-76.jpg]], т. е. СО есть биссектриса угла С.<br>Теперь соединяем точку О с вершиной D, соседней с С, и доказываем, что треугольник COD равнобедренный и DO — биссектриса угла D многоугольника. И т. д.<br> <br>В итоге получается, что каждый треугольник, у которого одна сторона есть сторона многоугольника, а противолежащая вершина — точка О, является равнобедренным. Все эти треугольники имеют равные боковые стороны и равные высоты, опущенные на их основания. Отсюда следует, что все вершины многоугольника находятся на окружности с центром О и радиусом, равным боковым сторонам треугольников, а все стороны многоугольника касаются окружности с центром О и радиусом,<br>равным высотам треугольников, опущенным из вершины О. Теорема доказана.<br>Вписанная и описанная окружности<br>правильного многоугольника имеют<br>один и тот же центр. Его называют<br>центром многоугольника. Угол, подко-<br>торым видна сторона правильногомно-<br>гоугольника из его центра,называет-<br>ся центральным угломмногоуголь-<br>Рис. 280    ника.<br><br><br><br>  | + | Соединим точку О с вершиной С, соседней с В. Треугольники АВО и СВО равны по первому признаку равенства треугольников. У них сторона ОВ общая, стороны АВ и ВС равны как стороны многоугольника, а углы при вершине В равны [[Image:24-06-76.jpg]]  Из равенства треугольников следует, что треугольник ОВС равнобедренный с углом при вершине С, равным [[Image:24-06-76.jpg]], т. е. СО есть биссектриса угла С.<br>Теперь соединяем точку О с вершиной D, соседней с С, и доказываем, что треугольник COD равнобедренный и DO — биссектриса угла D многоугольника. И т. д.<br> <br>В итоге получается, что каждый треугольник, у которого одна сторона есть сторона многоугольника, а противолежащая вершина — точка О, является равнобедренным. Все эти треугольники имеют равные боковые стороны и равные высоты, опущенные на их основания. Отсюда следует, что все вершины многоугольника находятся на окружности с центром О и радиусом, равным боковым сторонам треугольников, а все стороны многоугольника касаются окружности с центром О и радиусом, равным высотам треугольников, опущенным из вершины О. Теорема доказана. |  |  | + |   |  |  | + | Вписанная и описанная окружности правильного многоугольника имеют один и тот же центр. Его называют центром многоугольника. Угол, под которым видна сторона правильного многоугольника из его центра, называется центральным углом многоугольника.<br><br>[[Image:24-06-77.jpg]]<br><br>    |  |  |  |  |  |  |  | <br> ''А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений'' <br>   |  | <br> ''А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений'' <br>   |  
 Версия 13:17, 24 июня 2010 
 Гипермаркет знаний>>Математика>>Математика 9 класс>>Математика:Правильные многоугольники 
 
                                             ПРАВИЛЬНЫЕ МНОГОУГОЛЬНИКИ
 Выпуклый многоугольник называется правильным, если у него все стороны равны и все углы равны.
 Многоугольник называется вписанным в окружность, если все его вершины лежат на некоторой окружности. Многоугольник называется описанным около окружности, если все его стороны касаются некоторой окружности.
 Теорема 13.3. Правильный выпуклый многоугольник является вписанным в окружность и описанным около окружности.
 Доказательство. Пусть А и В — две соседние вершины правильного многоугольника (рис. 280). Проведем биссектрисы углов многоугольника из вершин А и В. Пусть О — точка их пересечения. Треугольник АОВ равнобедренный с основанием АВ и углами при основании, равными     где  —угол многоугольника. 
 Соединим точку О с вершиной С, соседней с В. Треугольники АВО и СВО равны по первому признаку равенства треугольников. У них сторона ОВ общая, стороны АВ и ВС равны как стороны многоугольника, а углы при вершине В равны  Из равенства треугольников следует, что треугольник ОВС равнобедренный с углом при вершине С, равным  , т. е. СО есть биссектриса угла С. Теперь соединяем точку О с вершиной D, соседней с С, и доказываем, что треугольник COD равнобедренный и DO — биссектриса угла D многоугольника. И т. д.
 
 В итоге получается, что каждый треугольник, у которого одна сторона есть сторона многоугольника, а противолежащая вершина — точка О, является равнобедренным. Все эти треугольники имеют равные боковые стороны и равные высоты, опущенные на их основания. Отсюда следует, что все вершины многоугольника находятся на окружности с центром О и радиусом, равным боковым сторонам треугольников, а все стороны многоугольника касаются окружности с центром О и радиусом, равным высотам треугольников, опущенным из вершины О. Теорема доказана.
 Вписанная и описанная окружности правильного многоугольника имеют один и тот же центр. Его называют центром многоугольника. Угол, под которым видна сторона правильного многоугольника из его центра, называется центральным углом многоугольника.
 
  
 
 А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений
 
 Книги, учебники математике скачать, конспект на помощь учителю и ученикам, учиться онлайн 
 
 Содержание урока
 конспект урока  опорный каркас  презентация урока  акселеративные методы  интерактивные технологии 
Практика  задачи и упражнения  самопроверка  практикумы, тренинги, кейсы, квесты  домашние задания  дискуссионные вопросы  риторические вопросы от учеников
 
Иллюстрации  аудио-, видеоклипы и мультимедиа  фотографии, картинки  графики, таблицы, схемы  юмор, анекдоты, приколы, комиксы  притчи, поговорки, кроссворды, цитаты
Дополнения  рефераты  статьи  фишки для любознательных  шпаргалки  учебники основные и дополнительные  словарь терминов  прочие 
Совершенствование учебников и уроков  исправление ошибок в учебнике  обновление фрагмента в учебнике  элементы новаторства на уроке  замена устаревших знаний новыми 
 
Только для учителей  идеальные уроки  календарный план на год  методические рекомендации  программы  обсуждения
Интегрированные уроки 
 Если у вас есть исправления или предложения к данному уроку, напишите нам. 
 Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум.
 
 
 
 |