'''<u>План:</u>'''<u><br></u>1. Що таке рівняння, корінь рівняння.<br>2. Правила розв’язування рівнянь.
'''<u>План:</u>'''<u><br></u>1. Що таке рівняння, корінь рівняння.<br>2. Правила розв’язування рівнянь.
+
<br>
-
+
[[Image:Matem.jpeg]]
-
[[Image:matem.jpeg]]
+
<br>'''<u>1. Що таке рівняння, корінь рівняння<br></u>'''
<br>'''<u>1. Що таке рівняння, корінь рівняння<br></u>'''
Строка 27:
Строка 27:
Число, яке задовольняє рівняння, називається його '''коренем''' (корінь - root) , або розв'язком (розв'язок - solution).
Число, яке задовольняє рівняння, називається його '''коренем''' (корінь - root) , або розв'язком (розв'язок - solution).
-
[[Image:uravn.jpeg]]
+
[[Image:Uravn.jpeg]]
Наприклад: <br>а) 3х = 21; х = 7 - корінь рівняння, оскільки 3 • 7 = 21 (правильна рівність);
Наприклад: <br>а) 3х = 21; х = 7 - корінь рівняння, оскільки 3 • 7 = 21 (правильна рівність);
Строка 44:
Строка 44:
3. Обидві частини рівняння можна помножити або поділити на одне й те саме число, відмінне від нуля. <br>Рівняння виду ax+b називається лінійним рівнянням (лінійне рівняння - linear equation) із змінною х. Числа a,b - коефіцієнти (коефіцієнт - coefficient) даного рівняння; a - коефіцієнт при змінній x, b - вільний член рівняння. <br>Якщо a≠0, то рівняння ax+b називають рівнянням першого степеня з однією змінною (рівняння першого степеня - simple equation). <br>'''<u></u>'''
3. Обидві частини рівняння можна помножити або поділити на одне й те саме число, відмінне від нуля. <br>Рівняння виду ax+b називається лінійним рівнянням (лінійне рівняння - linear equation) із змінною х. Числа a,b - коефіцієнти (коефіцієнт - coefficient) даного рівняння; a - коефіцієнт при змінній x, b - вільний член рівняння. <br>Якщо a≠0, то рівняння ax+b називають рівнянням першого степеня з однією змінною (рівняння першого степеня - simple equation). <br>'''<u></u>'''
+
+
'''<u></u>'''
'''<u>2. Основні правила розв'язування рівнянь</u>'''
'''<u>2. Основні правила розв'язування рівнянь</u>'''
+
+
[[Image:matem2.jpeg]]
<br>''<u>Правило 1: Щоб знайти невідомий доданок, треба від суми відняти відомий доданок (якщо а + х = b, то x = b - a).<br></u>''Приклади:<br>а) 7 + х = 23; х = 23 - 7; х = 16;<br>б) х + 0,2 = 1; х = 1 - 0,2; х = 0,8;<br>в) 1,8 + х = 0,5; х = 0,5 - 1,8; х = -1,3;<br>г) -3 + х = -2; х = -2 - (-3); х = -2 + 3; х = 1.
<br>''<u>Правило 1: Щоб знайти невідомий доданок, треба від суми відняти відомий доданок (якщо а + х = b, то x = b - a).<br></u>''Приклади:<br>а) 7 + х = 23; х = 23 - 7; х = 16;<br>б) х + 0,2 = 1; х = 1 - 0,2; х = 0,8;<br>в) 1,8 + х = 0,5; х = 0,5 - 1,8; х = -1,3;<br>г) -3 + х = -2; х = -2 - (-3); х = -2 + 3; х = 1.
Мета: навчитись розв’язувати рівняння з однією змінною.
План: 1. Що таке рівняння, корінь рівняння. 2. Правила розв’язування рівнянь.
1. Що таке рівняння, корінь рівняння
Рівняння - це рівність, яка містить невідомі числа, позначені буквами.
Невідомі числа в рівнянні називають змінними (змінна - variable). Змінні найчастіше позначають буквами x,y,z, хоч можна позначити їх і іншими буквами.
Наприклад : 5x=30, 3a=18.
Число, яке задовольняє рівняння, називається його коренем (корінь - root) , або розв'язком (розв'язок - solution).
Наприклад: а) 3х = 21; х = 7 - корінь рівняння, оскільки 3 • 7 = 21 (правильна рівність);
б) 0,8 + х = 0,5; х = -0,3 - корінь рівняння, оскільки 0,8 + (-0,3) = 0,5 (правильна рівність);
в) 3х + х = -2; х = -0,5 - корінь рівняння, оскільки 3 • (-0,5) + (-0,5) = -2 (правильна рівність);
г) рівняння 5 : х = 0 не має коренів (ділити на 0 не можна, а при діленні числа 5 на інші числа в частці не буде 0).
Розв'язати (solve) рівняння - це означає знайти всі його розв'язки або показати, що їх не існує.
Завжди правильні такі основні властивості рівнянь: 1. У будь-якій частині рівняння можна звести подібні доданки або розкрити дужки.
2. Будь-який член рівняння можна перенести з однієї частини рівняння в іншу, змінивши його знак на протилежний.
3. Обидві частини рівняння можна помножити або поділити на одне й те саме число, відмінне від нуля. Рівняння виду ax+b називається лінійним рівнянням (лінійне рівняння - linear equation) із змінною х. Числа a,b - коефіцієнти (коефіцієнт - coefficient) даного рівняння; a - коефіцієнт при змінній x, b - вільний член рівняння. Якщо a≠0, то рівняння ax+b називають рівнянням першого степеня з однією змінною (рівняння першого степеня - simple equation).
2. Основні правила розв'язування рівнянь
Правило 1: Щоб знайти невідомий доданок, треба від суми відняти відомий доданок (якщо а + х = b, то x = b - a). Приклади: а) 7 + х = 23; х = 23 - 7; х = 16; б) х + 0,2 = 1; х = 1 - 0,2; х = 0,8; в) 1,8 + х = 0,5; х = 0,5 - 1,8; х = -1,3; г) -3 + х = -2; х = -2 - (-3); х = -2 + 3; х = 1.
Правило 2: Щоб знайти невідоме зменшуване, треба додати від'ємник і різницю (якщо x - a = b, то x = a + b). Приклади: а) х - 8 = 5; х = 8 + 5; х = 13; б) х - 1,4 = -6; х = 1,4 + (-6); х = -4,6; в) х - (-2) = -1; х = -2 + (-1); х = -3.
Правило 3: Щоб знайти невідомий від'ємник, треба від зменшуваного відняти різницю (якщо a - x = b, то x = a - b). Приклади: а) 9 - х = 1,3; х = 9 - 1,3; х = 7,7;
б) -3 - х = -7; х = -3 - (07); х = 4.
Правило 4: Щоб знайти невідомий множник, треба добуток поділити на відомий множник (якщо ax = b, то x = b : a). Приклади: а) 0,2х = 6, х = 6 : 0,2, х = 30; б) 3x=0,4 x=0,4/3 x=2/15.
Правило 5: Щоб знайти невідоме ділене, треба частку помножити на дільник (якщо x : a = b, то x = ab). Приклади: а) х : 0,3 = 4, х = 4 • 0,3, х = 1,2; б) х : (-2,5) = 2, х = 2 • (-2,5), х = -5;
Правило 6: Щоб знайти невідомий дільник, треба ділене поділити на частку (якщо а : х = b, то x = a : b, або якщо). Приклад: а) 0,8 : х = -5, х = 0,8 : (-5), х = -0,16.
Інші правила розв'язування рівнянь
Правило 1: Корені рівняння не зміняться, якщо будь-який доданок перенести з однієї частини рівняння в другу, змінивши при цьому його знак. Приклади: а) 3х - 8 х - 14, 3х - х = -14 + 8, 2х = -6, х = -6 : 2, х = -3; б) -2(3х + 4) = -10 - 8х, -6х - 8 = -10 - 8х, -6х + 8х = -10 + 8, 2х = -2, х = -1.
Правило 2: Корені рівняння не зміняться, якщо обидві його частини помножити чи поділити на одне і те ж число, відмінне від нуля. Приклади: а) 10х - 120 = 30х - 40. Поділимо кожен доданок обидвох частин рівняння на 10. х - 12 = 3х - 4, -2х = 8, х = -4.
На відео розібрані типові прикладм з вирішення лінійного рівняння:
Для допитливих приклад більш складний:
Задача на логіку (Задача Піфагора) - Скажи мені, великий Піфагор, скільки учнів відвідують твою школу і слухають твої бесіди? - Ось скільки, - відповів філософ, - половина вивчає математику, чверть - музику, сьома частина перебуває у мовчанні та, крім того, є ще три жінки. Відповідь: Позначив за х - кількість відвідувачів школи Піфагора, задача зводиться до рівняння: , розв'язавши яке отримаємо х=28. Отже, школу великого Піфагора відвідують 28 учнів.
Спробуйте самі Складіть задачу про ваш клас, вашу сім'ю, ваших друзів, яка б розв'язувалася за допомогою рівняння, схожу на задачу Піфагора. Удачі вам!
Відредаговано і надіслано Мазуренко М.С.
Если у вас есть исправления или предложения к данному уроку, напишите нам.
Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - форум.