KNOWLEDGE HYPERMARKET


Чертежи в системе прямоугольных проекций
Строка 17: Строка 17:
&nbsp;&nbsp;&nbsp; Повернем плоскость Н вокруг оси ОХ на 90° вниз, до совмещения с плоскостью V, как показано на рис. 105. Получим ортогональные проекции точки. Обратите внимание на то, что проекции а и а' расположились на одной прямой а'а (рис. 105). Линия аа' называется линией проекционной связи.<br>  
&nbsp;&nbsp;&nbsp; Повернем плоскость Н вокруг оси ОХ на 90° вниз, до совмещения с плоскостью V, как показано на рис. 105. Получим ортогональные проекции точки. Обратите внимание на то, что проекции а и а' расположились на одной прямой а'а (рис. 105). Линия аа' называется линией проекционной связи.<br>  
-
[[Image:Чер85.jpg|181x306px]]  
+
[[Image:Чер85.jpg|181x306px|Чер85.jpg]]  
'''Выводы:'''<br>&nbsp; <br>1. Фронтальная и горизонтальная проекции точки всегда находятся на перпендикуляре к оси проекций ох, называемом линией проекционной связи.<br>2. Отрезок аа<sub>x</sub> — есть расстояние точки А до плоскости V.<br>3. Отрезок а'а<sub>x</sub> — расстояние точки А до плоскости Н.<br>4. Положение точки в пространстве определяют две ее проекции.<br>&nbsp;&nbsp;&nbsp;&nbsp; Прямоугольное (ортогональное) проецирование точки на три плоскости&nbsp;&nbsp; проекций.<br>Рассмотрим проецирование точки А на три взаимно перпендикулярные плоскости. К фронтальной и горизонтальной плоскостям проекций добавим третью — профильную плоскость проекций (W — «дубль вэ»), которую расположим перпендикулярно к плоскостям V и Н. Используя метод ортогонального проецирования, отобразим точку на трех плоскостях проекций. На профильной плоскости проекций получим изображение, которое будем называть профильной проекцией точки. Профильная проекция обозначается а", а читается как «а два штриха» (рис. 106).<br>&nbsp;&nbsp;&nbsp;&nbsp; Плоскости проекций Н и W разворачивают до совмещения с плоскостью V, как показано на рис. 106, 107.<br>&nbsp; Линии пересечения плоскостей являются осями проекций ох, оу, ох (рис. 106). Обратим внимание на то, что проекции а' и а, а' и а", а и а" лежат на прямых, называемых линиями проекционной связи (рис. 107). Такая зависимость в расположении проекций точки называется проекционной связью и при выполнении чертежей должна обязательно соблюдаться. Чертеж, состоящий из нескольких прямоугольных проекций, называется чертежом в системе прямоугольных проекций, или ортогональным чертежом.  
'''Выводы:'''<br>&nbsp; <br>1. Фронтальная и горизонтальная проекции точки всегда находятся на перпендикуляре к оси проекций ох, называемом линией проекционной связи.<br>2. Отрезок аа<sub>x</sub> — есть расстояние точки А до плоскости V.<br>3. Отрезок а'а<sub>x</sub> — расстояние точки А до плоскости Н.<br>4. Положение точки в пространстве определяют две ее проекции.<br>&nbsp;&nbsp;&nbsp;&nbsp; Прямоугольное (ортогональное) проецирование точки на три плоскости&nbsp;&nbsp; проекций.<br>Рассмотрим проецирование точки А на три взаимно перпендикулярные плоскости. К фронтальной и горизонтальной плоскостям проекций добавим третью — профильную плоскость проекций (W — «дубль вэ»), которую расположим перпендикулярно к плоскостям V и Н. Используя метод ортогонального проецирования, отобразим точку на трех плоскостях проекций. На профильной плоскости проекций получим изображение, которое будем называть профильной проекцией точки. Профильная проекция обозначается а", а читается как «а два штриха» (рис. 106).<br>&nbsp;&nbsp;&nbsp;&nbsp; Плоскости проекций Н и W разворачивают до совмещения с плоскостью V, как показано на рис. 106, 107.<br>&nbsp; Линии пересечения плоскостей являются осями проекций ох, оу, ох (рис. 106). Обратим внимание на то, что проекции а' и а, а' и а", а и а" лежат на прямых, называемых линиями проекционной связи (рис. 107). Такая зависимость в расположении проекций точки называется проекционной связью и при выполнении чертежей должна обязательно соблюдаться. Чертеж, состоящий из нескольких прямоугольных проекций, называется чертежом в системе прямоугольных проекций, или ортогональным чертежом.  
-
[[Image:Чер86.jpg|256x292px]][[Image:Чер87.jpg|455x294px]]  
+
[[Image:Чер86.jpg|256x292px|Чер86.jpg]][[Image:Чер87.jpg|455x294px|Чер87.jpg]]  
-
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Чертеж точки в системе прямоугольных проекций представлен на рис. 107, б.Построение третьей&nbsp; проекции&nbsp;&nbsp; точки&nbsp;&nbsp; по двум заданным.<br>Если известны любые две проекции точки (например, а и а'), то можно найти третью проекцию (в нашем примере а"). Для этого можно использовать постоянную прямую чертежа, которая проводится под углом 45° (рис. 108). Через заданные проекции а и а' точки А проводим линии связи перпендикулярно к осям oz и оу. Точки пересечения линий связи дают искомую проекцию а". Перенос линии проекционной связи с оси оун на ось oyw осуществляется с помощью постоянной прямой I (рис. 108). Так с помощью вспомогательной прямой находится третья проекция а" точки А по двум заданным.<br>&nbsp;&nbsp; Профильную проекцию а" точки А можно найти способом координирования, показанным на рис. 109. Из точки а' проведем линию проекционной связи к оси z, на ней отложим отрезок aza" = аха. Обратите внимание на то, что расстояние от оси z до профильной проекции точки равно расстоянию от оси х до ее горизонтальной проекции.<br>[[Image:чер88.jpg]]<br>
+
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Чертеж точки в системе прямоугольных проекций представлен на рис. 107, б.Построение третьей&nbsp; проекции&nbsp;&nbsp; точки&nbsp;&nbsp; по двум заданным.<br>Если известны любые две проекции точки (например, а и а'), то можно найти третью проекцию (в нашем примере а"). Для этого можно использовать постоянную прямую чертежа, которая проводится под углом 45° (рис. 108). Через заданные проекции а и а' точки А проводим линии связи перпендикулярно к осям oz и оу. Точки пересечения линий связи дают искомую проекцию а". Перенос линии проекционной связи с оси оун на ось oyw осуществляется с помощью постоянной прямой I (рис. 108). Так с помощью вспомогательной прямой находится третья проекция а" точки А по двум заданным.
 +
[[Image:Чер88.jpg|252x273px]]<br>&nbsp;&nbsp; Профильную проекцию а" точки А можно найти способом координирования, показанным на рис. 109. Из точки а' проведем линию проекционной связи к оси z, на ней отложим отрезок aza" = аха. Обратите внимание на то, что расстояние от оси z до профильной проекции точки равно расстоянию от оси х до ее горизонтальной проекции.<br>[[Image:чер89.jpg]]<br>
 +
 +
 +
<br>
<br>  
<br>  

Версия 20:48, 27 декабря 2010

Гипермаркет знаний>>Черчение 9 класс>>Черчение: Чертежи в системе прямоугольных проекций


     Вы научились строить аксонометрические изображения, в основу которых положено параллельное проецирование. С помощью параллельного проецирования можно построить и другие изображения.
    Наиболее широко применяемыми в технике являются изображения, которые получены при прямоугольном проецировании на одну, две и три взаимно перпендикулярные плоскости проекций.
Прямоугольное (ортогональное) проецирование точки на одну плоскость   проекций.Рассмотрим самый простой случай — ортогональное проецирование точки (рис. 102).
   Перед плоскостью проекций поместим точку А и через нее проведем проецирующий луч ва под пря¬мым углом к плоскости проекций до пересечения с ней. Получим точку а — проекцию точки А.

Чер82.jpg


Вывод:
 
1.Проекция точки на данную плоскость проекций есть точка.
2.Любая проецируемая точка имеет одну проекцию на выбранной плоскости проекций.
3.Проекция точки, лежащей на плоскости проекций, совпадает с самой точкой.
     Рассмотрим другой пример. На проецирующем луче разместим три точки: А, В, С (рис. 103). Их проекцией на плоскости Р является точка а, следовательно, а=Ь=c. По одной проекции нельзя определить, сколько объектов (точек) было на нее спроецировано.
Вывод:
1. Любое количество точек, находящихся на одном проецирующем луче, проецируется в одну точку.
2. Для определения положения точки в пространстве одной ее проекции недостаточно.

Чер83.jpg
    Прямоугольное (ортогональное) проецирование точки на две плоскости  проекций.
    Метод выполнения прямоугольных изображений на две взаимно перпендикулярные плоскости проекций впервые был разработан в 1799 году французским инженером и ученым Гаспаром Монжем, который считается основоположником начертательной геометрии — науки об изображении предметов и графических способах решения задач.

Чер84.jpg
    Для того чтобы получить две проекции точки, определяющих положение ее в пространстве, возьмем две взаимно перпендикулярные плоскости: V — фронтальную и Н — горизонтальную. Они будут пересекаться по прямой ох, которую называют осью проекций (рис. 104).
    Расположим точку А в двугранном углу. Используя метод прямоугольного проецирования, спроецируем ее на плоскости проекций, получим фронтальную (а') и горизонтальную (а) проекции точки А. Запись а' читается как «а штрих».
    Мы рассмотрели метод получения изображений точки А в системе двух плоскостей проекций. Чтобы решить обратную задачу: по изображениям точки найти ее положение в пространстве, необходимо от проекций а и а' провести проецирующие лучи перпендикулярно плоскостям проекций. Их пересечение определит положение точки А в пространстве.

    Повернем плоскость Н вокруг оси ОХ на 90° вниз, до совмещения с плоскостью V, как показано на рис. 105. Получим ортогональные проекции точки. Обратите внимание на то, что проекции а и а' расположились на одной прямой а'а (рис. 105). Линия аа' называется линией проекционной связи.

Чер85.jpg

Выводы:
 
1. Фронтальная и горизонтальная проекции точки всегда находятся на перпендикуляре к оси проекций ох, называемом линией проекционной связи.
2. Отрезок ааx — есть расстояние точки А до плоскости V.
3. Отрезок а'аx — расстояние точки А до плоскости Н.
4. Положение точки в пространстве определяют две ее проекции.
     Прямоугольное (ортогональное) проецирование точки на три плоскости   проекций.
Рассмотрим проецирование точки А на три взаимно перпендикулярные плоскости. К фронтальной и горизонтальной плоскостям проекций добавим третью — профильную плоскость проекций (W — «дубль вэ»), которую расположим перпендикулярно к плоскостям V и Н. Используя метод ортогонального проецирования, отобразим точку на трех плоскостях проекций. На профильной плоскости проекций получим изображение, которое будем называть профильной проекцией точки. Профильная проекция обозначается а", а читается как «а два штриха» (рис. 106).
     Плоскости проекций Н и W разворачивают до совмещения с плоскостью V, как показано на рис. 106, 107.
  Линии пересечения плоскостей являются осями проекций ох, оу, ох (рис. 106). Обратим внимание на то, что проекции а' и а, а' и а", а и а" лежат на прямых, называемых линиями проекционной связи (рис. 107). Такая зависимость в расположении проекций точки называется проекционной связью и при выполнении чертежей должна обязательно соблюдаться. Чертеж, состоящий из нескольких прямоугольных проекций, называется чертежом в системе прямоугольных проекций, или ортогональным чертежом.

Чер86.jpgЧер87.jpg

      Чертеж точки в системе прямоугольных проекций представлен на рис. 107, б.Построение третьей  проекции   точки   по двум заданным.
Если известны любые две проекции точки (например, а и а'), то можно найти третью проекцию (в нашем примере а"). Для этого можно использовать постоянную прямую чертежа, которая проводится под углом 45° (рис. 108). Через заданные проекции а и а' точки А проводим линии связи перпендикулярно к осям oz и оу. Точки пересечения линий связи дают искомую проекцию а". Перенос линии проекционной связи с оси оун на ось oyw осуществляется с помощью постоянной прямой I (рис. 108). Так с помощью вспомогательной прямой находится третья проекция а" точки А по двум заданным.

Чер88.jpg
   Профильную проекцию а" точки А можно найти способом координирования, показанным на рис. 109. Из точки а' проведем линию проекционной связи к оси z, на ней отложим отрезок aza" = аха. Обратите внимание на то, что расстояние от оси z до профильной проекции точки равно расстоянию от оси х до ее горизонтальной проекции.
Чер89.jpg




Содержание урока
1236084776 kr.jpg конспект урока                       
1236084776 kr.jpg опорный каркас  
1236084776 kr.jpg презентация урока
1236084776 kr.jpg акселеративные методы 
1236084776 kr.jpg интерактивные технологии 

Практика
1236084776 kr.jpg задачи и упражнения 
1236084776 kr.jpg самопроверка
1236084776 kr.jpg практикумы, тренинги, кейсы, квесты
1236084776 kr.jpg домашние задания
1236084776 kr.jpg дискуссионные вопросы
1236084776 kr.jpg риторические вопросы от учеников
 
Иллюстрации
1236084776 kr.jpg аудио-, видеоклипы и мультимедиа 
1236084776 kr.jpg фотографии, картинки 
1236084776 kr.jpg графики, таблицы, схемы
1236084776 kr.jpg юмор, анекдоты, приколы, комиксы
1236084776 kr.jpg притчи, поговорки, кроссворды, цитаты

Дополнения
1236084776 kr.jpg рефераты
1236084776 kr.jpg статьи 
1236084776 kr.jpg фишки для любознательных 
1236084776 kr.jpg шпаргалки 
1236084776 kr.jpg учебники основные и дополнительные
1236084776 kr.jpg словарь терминов                          
1236084776 kr.jpg прочие 

Совершенствование учебников и уроков
1236084776 kr.jpg исправление ошибок в учебнике
1236084776 kr.jpg обновление фрагмента в учебнике 
1236084776 kr.jpg элементы новаторства на уроке 
1236084776 kr.jpg замена устаревших знаний новыми 
 
Только для учителей
1236084776 kr.jpg идеальные уроки 
1236084776 kr.jpg календарный план на год  
1236084776 kr.jpg методические рекомендации  
1236084776 kr.jpg программы
1236084776 kr.jpg обсуждения


 Интегрированные уроки


Если у вас есть исправления или предложения к данному уроку, напишите нам.

Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум.