KNOWLEDGE HYPERMARKET


Внутренняя энергия.
Строка 5: Строка 5:
<metakeywords>Физика, 10 класс, Внутренняя энергия</metakeywords>  
<metakeywords>Физика, 10 класс, Внутренняя энергия</metakeywords>  
-
&nbsp;&nbsp; Термодинамика была создана в середине XIX в. после открытия закона сохранения энергии. В ее основе лежит понятие ''внутренняя энергия''. С него мы и начнем. Предварительно остановимся на вопросе о том, какая связь существует между термодинамикой и молекулярно-[[Идеальный_газ_в_молекулярно-кинетической_теории|кинетической]] теорией.<br>&nbsp;&nbsp; '''Термодинамика и статистическая механика.''' Первой научной теорией тепловых процессов была не молекулярно-кинетическая теория, а термодинамика. Она возникла при изучении оптимальных условий использования теплоты для совершения работы. Это произошло в середине XIX в., задолго до того, как молекулярно-кинетическая теория получила всеобщее признание.<br>&nbsp;&nbsp; Сейчас в науке и [[Давление_в_природе_и_технике|технике]] при изучении тепловых явлений используются как термодинамика, так и молекулярно-кинетическая теория. В теоретической физике молекулярно-кинетическую теорию называют ''статистической механикой''. Термодинамика и статистическая механика изучают различными методами одни и те же явления и взаимно дополняют друг друга.<br>&nbsp;&nbsp; ''Главное содержание термодинамики состоит в двух основных ее законах, касающихся поведения энергии.'' Эти законы установлены опытным путем. Они справедливы для всех веществ независимо от их внутреннего строения.<br>&nbsp;&nbsp; Статистическая механика более глубокая и точная наука, чем термодинамика, но и более сложная. К ней прибегают в тех случаях, когда простые соотношения термодинамики оказываются недостаточными для объяснения наблюдаемых явлений.<br>&nbsp;&nbsp; '''Внутренняя энергия в молекулярно-кинетической теории.''' В середине XIX в. было доказано, что наряду с механической энергией макроскопические тела обладают еще и энергией, заключенной внутри самих тел. Эта ''внутренняя энергия'' входит в баланс энергетических превращений в природе. После открытия внутренней энергии был сформулирован ''закон сохранения и превращения энергии''.<br>&nbsp;&nbsp; Что такое внутренняя [[Кинетическая_энергия_и_ее_изменение|энергия]]?<br>&nbsp;&nbsp; Когда скользящая по льду шайба останавливается под действием силы трения, то ее механическая (кинетическая) энергия не просто исчезает, а передается беспорядочно движущимся молекулам льда и шайбы. Неровности поверхностей трущихся тел деформируются при движении, и интенсивность беспорядочного движения молекул возрастает. Оба тела нагреваются, что и означает увеличение их внутренней энергии.<br>&nbsp;&nbsp; Нетрудно наблюдать и обратный переход внутренней энергии в механическую. Если нагревать воду в пробирке, закрытой пробкой, то внутренняя энергия воды и внутренняя энергия пара начнут возрастать. Давление пара увеличится настолько, что пробка будет выбита. Кинетическая энергия пробки увеличится за счет внутренней энергии пара. Расширяясь, водяной пар совершает работу и охлаждается. Его внутренняя энергия при этом уменьшается.<br>&nbsp;&nbsp; С точки зрения молекулярно-кинетической теории '''внутренняя энергия макроскопического тела равна сумме кинетических энергий беспорядочного движения всех молекул (или атомов) тела и потенциальных энергий взаимодействия всех молекул друг с другом (но не с молекулами других тел).'''<br>&nbsp;&nbsp; Вычислить внутреннюю энергию тела (или ее изменение), учитывая [[Броуновское_движение|движение]] отдельных молекул и их положения относительно друг друга, практически невозможно из-за огромного числа молекул в макроскопических телах. Поэтому необходимо уметь определять значение внутренней энергии (или ее изменение) в зависимости от макроскопических параметров, которые можно непосредственно измерить.<br>&nbsp;&nbsp; '''Внутренняя&nbsp; энергия&nbsp; идеального&nbsp; одноатомного&nbsp; газа.''' Наиболее прост по своим свойствам одноатомный газ, состоящий из отдельных атомов, а не молекул. Одноатомными являются инертные газы - гелий, неон, аргон и др. Вычислим внутреннюю энергию идеального одноатомного газа.<br>&nbsp;&nbsp; Так как молекулы идеального газа не взаимодействуют друг с другом, то их потенциальная энергия равна нулю. Вся внутренняя энергия идеального газа определяется кинетической энергией беспорядочного движения его молекул.<br>&nbsp;&nbsp; Для вычисления внутренней энергии идеального одноатомного газа массой ''m'' нужно умножить среднюю кинетическую энергию одного атома на число атомов . Учитывая, что ''kN<sub>A</sub>=R'', получим формулу для внутренней энергии идеального газа:<br>[[Image:A75-1.jpg|center|215x48px|Внутренняя энергия]]&nbsp;&nbsp; '''Внутренняя энергия идеального одноатомного газа прямо пропорциональна его абсолютной [[Определение_температуры|температуре]].'''<br>&nbsp;&nbsp; Она не зависит от объема и других макроскопических параметров системы.<br>&nbsp;&nbsp; Изменение внутренней энергии идеального газа равно [[Image:A75-2.jpg|170x30px|Внутренняя энергия]], т.е. определяется температурами начального и конечного состояний газа и не зависит от процесса.<br>&nbsp;&nbsp; Если идеальный газ состоит из более сложных молекул, чем одноатомный, то его внутренняя энергия также пропорциональна абсолютной температуре, но коэффициент пропорциональности между ''U'' и ''T'' другой. Объясняется это тем, что сложные молекулы не только ''движутся поступательно, но и вращаются''. Внутренняя энергия таких газов равна сумме энергий поступательного и вращательного движений молекул.<br>&nbsp;&nbsp; '''Зависимость внутренней энергии от макроскопических параметров.''' Мы установили, что внутренняя энергия идеального газа зависит от одного параметра - температуры. От объема внутренняя энергия идеального газа не зависит потому, что потенциальная энергия взаимодействия его молекул равна нулю.<br>&nbsp;&nbsp; У реальных газов, жидкостей и твердых тел средняя потенциальная энергия взаимодействия молекул ''не равна нулю''. Правда, для газов она много меньше средней кинетической энергии молекул, но для твердых и жидких тел сравнима с ней.<br>&nbsp;&nbsp; Средняя потенциальная энергия взаимодействия молекул газа зависит от объема вещества, так как при изменении объема меняется среднее расстояние между [[Определение_температуры|молекулами]]. Следовательно, ''внутренняя энергия реального газа в термодинамике в общем случае зависит, наряду с температурой T, и от объема V.''<br>&nbsp;&nbsp; Значения макроскопических параметров (температуры ''T'', объема ''V'' и др.) однозначно определяют состояние тел. Поэтому они определяют и внутреннюю энергию макроскопических тел.<br>&nbsp;&nbsp; Внутренняя энергия ''U'' макроскопических тел однозначно определяется параметрами, характеризующими состояние этих тел: температурой и объемом.<br>&nbsp;&nbsp; В основе термодинамики лежит понятие внутренней энергии. Эта энергия зависит от макроскопических параметров: температуры и объема.<br>&nbsp;&nbsp; Внутренняя энергия идеального газа прямо пропорциональна его абсолютной температуре.<br><br><br>&nbsp;&nbsp;&nbsp;???<br>&nbsp;&nbsp; 1. Приведите примеры превращения [[Уменьшение_механической_энергии_системы_под_действием_сил_трения|механической]] энергии во внутреннюю и обратно в технике и быту.<br>&nbsp;&nbsp; 2. От каких физических величин зависит внутренняя энергия тела?<br>&nbsp;&nbsp; 3. Чему равна внутренняя энергия идеального одноатомного газа?<br>
+
<h2>Вступление</h2>
-
<br> ''Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский, Физика 10 класс''
+
Термодинамика была создана в середине XIX в. после открытия закона сохранения энергии. В ее основе лежит понятие ''внутренняя энергия''. С него мы и начнем. Предварительно остановимся на вопросе о том, какая связь существует между термодинамикой и молекулярно-[[Идеальный_газ_в_молекулярно-кинетической_теории|кинетической]] теорией.
-
<br> <sub>Материалы [[Физика и астрономия|по физике]], задание и ответы по классам, планы конспектов уроков [[Физика 10 класс|по физике для 10 класса]]</sub>  
+
<h2>Термодинамика и статистическая механика</h2>
-
'''<u>Содержание урока</u>'''
+
Первой научной теорией тепловых процессов была не молекулярно-кинетическая теория, а термодинамика. Она возникла при изучении оптимальных условий использования теплоты для совершения работы. Это произошло в середине XIX в., задолго до того, как молекулярно-кинетическая теория получила всеобщее признание.
-
'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] конспект урока                      '''
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] опорный каркас 
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] презентация урока
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] акселеративные методы
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] интерактивные технологии
+
-
+
-
'''<u>Практика</u>'''
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] задачи и упражнения
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] самопроверка
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] практикумы, тренинги, кейсы, квесты
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] домашние задания
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] дискуссионные вопросы
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] риторические вопросы от учеников
+
-
+
-
'''<u>Иллюстрации</u>'''
+
-
'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] аудио-, видеоклипы и мультимедиа '''
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] фотографии, картинки
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] графики, таблицы, схемы
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] юмор, анекдоты, приколы, комиксы
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] притчи, поговорки, кроссворды, цитаты
+
-
+
-
'''<u>Дополнения</u>'''
+
-
'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] рефераты'''
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] статьи
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] фишки для любознательных
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] шпаргалки
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] учебники основные и дополнительные
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] словарь терминов                         
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] прочие
+
-
+
-
<u>Совершенствование учебников и уроков
+
-
</u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] исправление ошибок в учебнике'''
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] обновление фрагмента в учебнике
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] элементы новаторства на уроке
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] замена устаревших знаний новыми
+
-
+
-
'''<u>Только для учителей</u>'''
+
-
'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] идеальные уроки '''
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] календарный план на год 
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] методические рекомендации 
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] программы
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] обсуждения
+
-
+
-
+
-
'''<u>Интегрированные уроки</u>'''
+
-
+
-
Если у вас есть исправления или предложения к данному уроку, [http://xvatit.com/index.php?do=feedback напишите нам].  
+
Сейчас в науке и [[Давление_в_природе_и_технике|технике]] при изучении тепловых явлений используются как термодинамика, так и молекулярно-кинетическая теория. В теоретической физике молекулярно-кинетическую теорию называют ''статистической механикой''. Термодинамика и статистическая механика изучают различными методами одни и те же явления и взаимно дополняют друг друга.
-
Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - [http://xvatit.com/forum/ Образовательный форум].
+
Главное содержание термодинамики состоит в двух основных ее законах, касающихся поведения энергии. Эти законы установлены опытным путем. Они справедливы для всех веществ независимо от их внутреннего строения.
 +
 
 +
Статистическая механика более глубокая и точная наука, чем термодинамика, но и более сложная. К ней прибегают в тех случаях, когда простые соотношения термодинамики оказываются недостаточными для объяснения наблюдаемых явлений.
 +
 
 +
<h2>Внутренняя энергия в молекулярно-кинетической теории</h2>
 +
 
 +
В середине XIX в. было доказано, что наряду с механической энергией макроскопические тела обладают еще и энергией, заключенной внутри самих тел. Эта ''внутренняя энергия'' входит в баланс энергетических превращений в природе. После открытия внутренней энергии был сформулирован ''закон сохранения и превращения энергии''.
 +
 
 +
'''Что такое внутренняя [[Кинетическая_энергия_и_ее_изменение|энергия]]?'''
 +
 
 +
Когда скользящая по льду шайба останавливается под действием силы трения, то ее механическая (кинетическая) энергия не просто исчезает, а передается беспорядочно движущимся молекулам льда и шайбы. Неровности поверхностей трущихся тел деформируются при движении, и интенсивность беспорядочного движения молекул возрастает. Оба тела нагреваются, что и означает увеличение их внутренней энергии.
 +
 
 +
Нетрудно наблюдать и обратный переход внутренней энергии в механическую. Если нагревать воду в пробирке, закрытой пробкой, то внутренняя энергия воды и внутренняя энергия пара начнут возрастать. Давление пара увеличится настолько, что пробка будет выбита. Кинетическая энергия пробки увеличится за счет внутренней энергии пара. Расширяясь, водяной пар совершает работу и охлаждается. Его внутренняя энергия при этом уменьшается.
 +
 
 +
С точки зрения молекулярно-кинетической теории внутренняя энергия макроскопического тела равна сумме кинетических энергий беспорядочного движения всех молекул (или атомов) тела и потенциальных энергий взаимодействия всех молекул друг с другом (но не с молекулами других тел).
 +
 
 +
Вычислить внутреннюю энергию тела (или ее изменение), учитывая [[Броуновское_движение|движение]] отдельных молекул и их положения относительно друг друга, практически невозможно из-за огромного числа молекул в макроскопических телах. Поэтому необходимо уметь определять значение внутренней энергии (или ее изменение) в зависимости от макроскопических параметров, которые можно непосредственно измерить.
 +
 
 +
<h2>Внутренняя энергия идеального одноатомного газа</h2>
 +
 
 +
Наиболее прост по своим свойствам одноатомный газ, состоящий из отдельных атомов, а не молекул. Одноатомными являются инертные газы - гелий, неон, аргон и др. Вычислим внутреннюю энергию идеального одноатомного газа.
 +
 
 +
Так как молекулы идеального газа не взаимодействуют друг с другом, то их потенциальная энергия равна нулю. Вся внутренняя энергия идеального газа определяется кинетической энергией беспорядочного движения его молекул.
 +
 
 +
Для вычисления внутренней энергии идеального одноатомного газа массой ''m'' нужно умножить среднюю кинетическую энергию одного атома на число атомов . Учитывая, что ''kN<sub>A</sub>=R'', получим формулу для внутренней энергии идеального газа:
 +
 
 +
<br>[[Image:A75-1.jpg|center|215x48px|Внутренняя энергия]]<br>
 +
 
 +
'''Внутренняя энергия идеального одноатомного газа прямо пропорциональна его абсолютной [[Определение_температуры|температуре]].'''
 +
 
 +
Она не зависит от объема и других макроскопических параметров системы.
 +
 
 +
Изменение внутренней энергии идеального газа равно <br>[[Image:A75-2.jpg|170x30px|Внутренняя энергия]]<br>, т.е. определяется температурами начального и конечного состояний газа и не зависит от процесса.
 +
 
 +
Если идеальный газ состоит из более сложных молекул, чем одноатомный, то его внутренняя энергия также пропорциональна абсолютной температуре, но коэффициент пропорциональности между ''U'' и ''T'' другой. Объясняется это тем, что сложные молекулы не только ''движутся поступательно, но и вращаются''. Внутренняя энергия таких газов равна сумме энергий поступательного и вращательного движений молекул.
 +
 
 +
<h2>Зависимость внутренней энергии от макроскопических параметров</h2>
 +
 
 +
Мы установили, что внутренняя энергия идеального газа зависит от одного параметра - температуры. От объема внутренняя энергия идеального газа не зависит потому, что потенциальная энергия взаимодействия его молекул равна нулю.
 +
 
 +
У реальных газов, жидкостей и твердых тел средняя потенциальная энергия взаимодействия молекул ''не равна нулю''. Правда, для газов она много меньше средней кинетической энергии молекул, но для твердых и жидких тел сравнима с ней.
 +
 
 +
Средняя потенциальная энергия взаимодействия молекул газа зависит от объема вещества, так как при изменении объема меняется среднее расстояние между [[Определение_температуры|молекулами]]. Следовательно, ''внутренняя энергия реального газа в термодинамике в общем случае зависит, наряду с температурой T, и от объема V.''
 +
 
 +
Значения макроскопических параметров (температуры ''T'', объема ''V'' и др.) однозначно определяют состояние тел. Поэтому они определяют и внутреннюю энергию макроскопических тел.
 +
 
 +
Внутренняя энергия ''U'' макроскопических тел однозначно определяется параметрами, характеризующими состояние этих тел: температурой и объемом.<br>&nbsp;&nbsp; В основе термодинамики лежит понятие внутренней энергии. Эта энергия зависит от макроскопических параметров: температуры и объема.
 +
 
 +
Внутренняя энергия идеального газа прямо пропорциональна его абсолютной температуре.
 +
 
 +
<h2>Вопросы</h2>
 +
 
 +
1. Приведите примеры превращения [[Уменьшение_механической_энергии_системы_под_действием_сил_трения|механической]] энергии во внутреннюю и обратно в технике и быту.<br>
 +
2. От каких физических величин зависит внутренняя энергия тела?<br>
 +
3. Чему равна внутренняя энергия идеального одноатомного газа?<br>
 +
 
 +
<br> ''Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский, Физика 10 класс''

Версия 17:02, 30 июня 2015

Гипермаркет знаний>>Физика и астрономия>>Физика 10 класс>>Физика: Внутренняя энергия


Содержание

Вступление

Термодинамика была создана в середине XIX в. после открытия закона сохранения энергии. В ее основе лежит понятие внутренняя энергия. С него мы и начнем. Предварительно остановимся на вопросе о том, какая связь существует между термодинамикой и молекулярно-кинетической теорией.

Термодинамика и статистическая механика

Первой научной теорией тепловых процессов была не молекулярно-кинетическая теория, а термодинамика. Она возникла при изучении оптимальных условий использования теплоты для совершения работы. Это произошло в середине XIX в., задолго до того, как молекулярно-кинетическая теория получила всеобщее признание.

Сейчас в науке и технике при изучении тепловых явлений используются как термодинамика, так и молекулярно-кинетическая теория. В теоретической физике молекулярно-кинетическую теорию называют статистической механикой. Термодинамика и статистическая механика изучают различными методами одни и те же явления и взаимно дополняют друг друга.

Главное содержание термодинамики состоит в двух основных ее законах, касающихся поведения энергии. Эти законы установлены опытным путем. Они справедливы для всех веществ независимо от их внутреннего строения.

Статистическая механика более глубокая и точная наука, чем термодинамика, но и более сложная. К ней прибегают в тех случаях, когда простые соотношения термодинамики оказываются недостаточными для объяснения наблюдаемых явлений.

Внутренняя энергия в молекулярно-кинетической теории

В середине XIX в. было доказано, что наряду с механической энергией макроскопические тела обладают еще и энергией, заключенной внутри самих тел. Эта внутренняя энергия входит в баланс энергетических превращений в природе. После открытия внутренней энергии был сформулирован закон сохранения и превращения энергии.

Что такое внутренняя энергия?

Когда скользящая по льду шайба останавливается под действием силы трения, то ее механическая (кинетическая) энергия не просто исчезает, а передается беспорядочно движущимся молекулам льда и шайбы. Неровности поверхностей трущихся тел деформируются при движении, и интенсивность беспорядочного движения молекул возрастает. Оба тела нагреваются, что и означает увеличение их внутренней энергии.

Нетрудно наблюдать и обратный переход внутренней энергии в механическую. Если нагревать воду в пробирке, закрытой пробкой, то внутренняя энергия воды и внутренняя энергия пара начнут возрастать. Давление пара увеличится настолько, что пробка будет выбита. Кинетическая энергия пробки увеличится за счет внутренней энергии пара. Расширяясь, водяной пар совершает работу и охлаждается. Его внутренняя энергия при этом уменьшается.

С точки зрения молекулярно-кинетической теории внутренняя энергия макроскопического тела равна сумме кинетических энергий беспорядочного движения всех молекул (или атомов) тела и потенциальных энергий взаимодействия всех молекул друг с другом (но не с молекулами других тел).

Вычислить внутреннюю энергию тела (или ее изменение), учитывая движение отдельных молекул и их положения относительно друг друга, практически невозможно из-за огромного числа молекул в макроскопических телах. Поэтому необходимо уметь определять значение внутренней энергии (или ее изменение) в зависимости от макроскопических параметров, которые можно непосредственно измерить.

Внутренняя энергия идеального одноатомного газа

Наиболее прост по своим свойствам одноатомный газ, состоящий из отдельных атомов, а не молекул. Одноатомными являются инертные газы - гелий, неон, аргон и др. Вычислим внутреннюю энергию идеального одноатомного газа.

Так как молекулы идеального газа не взаимодействуют друг с другом, то их потенциальная энергия равна нулю. Вся внутренняя энергия идеального газа определяется кинетической энергией беспорядочного движения его молекул.

Для вычисления внутренней энергии идеального одноатомного газа массой m нужно умножить среднюю кинетическую энергию одного атома на число атомов . Учитывая, что kNA=R, получим формулу для внутренней энергии идеального газа:


Внутренняя энергия

Внутренняя энергия идеального одноатомного газа прямо пропорциональна его абсолютной температуре.

Она не зависит от объема и других макроскопических параметров системы.

Изменение внутренней энергии идеального газа равно
Внутренняя энергия
, т.е. определяется температурами начального и конечного состояний газа и не зависит от процесса.

Если идеальный газ состоит из более сложных молекул, чем одноатомный, то его внутренняя энергия также пропорциональна абсолютной температуре, но коэффициент пропорциональности между U и T другой. Объясняется это тем, что сложные молекулы не только движутся поступательно, но и вращаются. Внутренняя энергия таких газов равна сумме энергий поступательного и вращательного движений молекул.

Зависимость внутренней энергии от макроскопических параметров

Мы установили, что внутренняя энергия идеального газа зависит от одного параметра - температуры. От объема внутренняя энергия идеального газа не зависит потому, что потенциальная энергия взаимодействия его молекул равна нулю.

У реальных газов, жидкостей и твердых тел средняя потенциальная энергия взаимодействия молекул не равна нулю. Правда, для газов она много меньше средней кинетической энергии молекул, но для твердых и жидких тел сравнима с ней.

Средняя потенциальная энергия взаимодействия молекул газа зависит от объема вещества, так как при изменении объема меняется среднее расстояние между молекулами. Следовательно, внутренняя энергия реального газа в термодинамике в общем случае зависит, наряду с температурой T, и от объема V.

Значения макроскопических параметров (температуры T, объема V и др.) однозначно определяют состояние тел. Поэтому они определяют и внутреннюю энергию макроскопических тел.

Внутренняя энергия U макроскопических тел однозначно определяется параметрами, характеризующими состояние этих тел: температурой и объемом.
   В основе термодинамики лежит понятие внутренней энергии. Эта энергия зависит от макроскопических параметров: температуры и объема.

Внутренняя энергия идеального газа прямо пропорциональна его абсолютной температуре.

Вопросы

1. Приведите примеры превращения механической энергии во внутреннюю и обратно в технике и быту.
2. От каких физических величин зависит внутренняя энергия тела?
3. Чему равна внутренняя энергия идеального одноатомного газа?


Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский, Физика 10 класс