KNOWLEDGE HYPERMARKET


Рациональные неравенства
Строка 1: Строка 1:
 +
<metakeywords>Гипермаркет Знаний - первый в мире!, Гипермаркет Знаний, Математика, 9 класс,  урок, на Тему, Рациональные неравенства</metakeywords>
 +
'''[[Гипермаркет знаний - первый в мире!|Гипермаркет знаний]]&gt;&gt;[[Математика|Математика]]&gt;&gt;[[Математика 9 класс|Математика 9 класс]]&gt;&gt;Математика:Рациональные неравенства<metakeywords>Рациональные неравенства</metakeywords>''' <br>  
'''[[Гипермаркет знаний - первый в мире!|Гипермаркет знаний]]&gt;&gt;[[Математика|Математика]]&gt;&gt;[[Математика 9 класс|Математика 9 класс]]&gt;&gt;Математика:Рациональные неравенства<metakeywords>Рациональные неравенства</metakeywords>''' <br>  

Версия 05:07, 10 октября 2012

Гипермаркет знаний>>Математика>>Математика 9 класс>>Математика:Рациональные неравенства


Рациональные неравенства


Рациональное неравенство с одной переменной х — это неравенство вида Рациональные неравенства — рациональные выражения, т.е. алгебраические выражения, составленные из чисел и переменной х с помощью операций сложения, вычитания, умно-жения, деления и возведения в натуральную степень. Разумеется, переменная может быть обозначена любой другой буквой, но в математике чаще всего предпочтение отдается букве х.

При решении рациональных неравенств используются те три правила, которые были сформулированы выше в § 1. С помощью этих правил обычно преобразуют заданное рациональное неравенство к виду / (ж) > 0, где / (х) — алгебраическая дробь (или многочлен). Далее разлагают числитель и знаменатель дроби f (х) на множители вида х - а (если, конечно, это возможно) и применяют метод интервалов, который мы уже упоминали выше (см. в предыдущем параграфе пример 3).

Пример 1. Решить неравенство  (х - 1) (х + 1) (х - 2) > 0.

Решение. Рассмотрим выражение f(х) = (х-1)(х + 1)(х-2).

Оно обращается в 0 в точках 1,-1,2; отметим эти точки на числовой прямой. Числовая прямая разбивается указанными точками на четыре промежутка (рис. 6), на каждом из которых выражение f (x) сохраняет постоянный знак. Чтобы в этом убедиться, проведем четыре рассуждения (для каждого из указанных промежутков в отдельности).
Числовая прямая
Возьмем любую точку х из промежутка (2, Эта точка расположена на числовой прямой правее точки -1, правее точки 1 и правее точки 2. Это значит, что х > -1, х >1, х > 2 (рис. 7). Но тогда x-1>0, х+1>0, х - 2 > 0, а значит, и f (х) > 0 (как произведение рациональное неравенство трех положительных чисел). Итак, на всем промежутке Al23.jpg выполняется неравенство f (x) > 0.

Числовая прямая
Возьмем любую точку х из интервала (1,2). Эта точка расположена на числовой прямой правее точки-1, правее точки 1, но левее точки 2. Значит, х > -1, х > 1, но х < 2 (рис. 8), а потому x + 1>0,x-1>0,x-2<0. Но тогда f(x) <0 (как произведение двух положительных и одного отрицательного числа). Итак, на промежутке (1,2) выполняется неравенство f (x) < 0.

Числовая прямая
Возьмем любую точку х из интервала (-1,1). Эта точка расположена на числовой прямой правее точки -1, левее точки 1 и левее точки 2. Значит, х >-1, но х< 1, х <2 (рис. 9), а потому х + 1 > 0, х -1 <0, х - 2 < 0. Но тогда f (x) > 0 (как произведение двух отрицательных и одного положительного числа). Итак, напромежутке (-1,1) выполняется неравенство f (x)> 0.

Числовая прямая
Возьмем, наконец, любую точку х из открытого луча (-оо, -1). Эта точка расположена на числовой прямой левее точки -1, левее точки 1 и левее точки 2. Это значит, что x<-1, х< 1, х<2 (рис. 10). Но тогда x - 1 < 0, x + 1 < 0, х - 2 < 0, а значит, и f (x) < 0 (как произведение трех отрицательных чисел). Итак, на всем промежутке (-оо, -1) выполняется неравенство f (x) < 0.

Числовая прямая
Подведем итоги. Знаки выражения f (x) в выделенных промежутках таковы, как показано на рис. 11. Нас интересуют те из них, на которых выполняется неравенство f (x) > 0. С помощью геометрической модели, представленной на рис. 11, устанавливаем, что неравенство f (x) > 0 выполняется на интервале (-1, 1) или на открытом луче Al28.jpg
О т в е т:  -1 < х < 1; х > 2.

Числовая прямая
Пример 2. Решить неравенство Неравенство
Решение. Как и в предыдущем примере, почерпнем необходимую информацию из рис. 11, но с двумя изменениями по сравнению с примером 1. Во-первых, поскольку нас интересует, при каких значениях х выполняется неравенство f (x) < 0, нам придется выбрать промежутки Al211.jpg Во-вторых, нас устраивают и те точки, в которых выполняется равенство f (x) = 0. Это точки -1, 1, 2, отметим их на рисунке темными кружочками и включим в ответ. На рис. 12 представлена геометрическая модель ответа, от которой нетрудно перейти к аналитической записи.
Ответ: Числовая прямая
П р и м е р 3. Решить неравенство Неравенство
Решение. Разложим на множители числитель и знаменатель алгебраической дроби fх, содержащейся в левой части неравенства. В числителе имеем х2- х = х(х - 1).

Чтобы разложить на множители квадратный трехчлен х2 - bх ~ 6, содержащийся в знаменателе дроби, найдем его корни. Из уравнения х2 - 5х - 6 = 0 находим х1 = -1, х2 = 6. Значит, Выражение  (мы воспользовались формулой разложения на множители квадратного трехчлена: ах2 + bх + с = а(х - х1 - х2)).
Тем самым мы преобразовали заданное неравенство к виду

Неравенство

Рассмотрим выражение:

Выражение
Числитель этой дроби обращается в 0 в точках 0 и 1, а знаменатель обращается в 0 в точках -1 и 6. Отметим эти точки на числовой прямой (рис. 13). Числовая прямая разбивается указанными точками на пять промежутков, причем на каждом промежутке выражение fх) сохраняет постоянный знак. Рассуждая так же, как в примере 1, приходим к выводу, что знаки выражения fх) в выделенных промежутках таковы, как показано на рис. 13. Нас интересует, где выполняется неравенство f (x) < 0. С помощью геометрической модели, представленной на рис. 13, устанавливаем, что f (х) < 0 на интервале (-1, 0) или на интервале (1, 6).

0твет: -1<x <0; 1<x<6.

Числовая прямая

Пример 4. Решить неравенство

Неравенство
Решение. При решении рациональных неравенств, как правило, предпочитают оставлять в правой части неравенства только число 0. Поэтому преобразуем неравенство к виду

Неравенство
Далее:

Неравенство
Как показывает опыт, если в правой части не(ра-венства содержится лишь число 0, удобнее проводить рассуждения, когда в левой его части и числитель и знаменатель имеют положительный старший  коэффициент. А что у нас? У нас в знаменателе дроби в этом смысле все в порядке (старший коэффициент, т.е. коэффициент при х2, равен 6 — положительное число), но в числителе не все в порядке — старший коэффициент (коэффициент при х) равен -4 (отрицательное число). Умножив обе части неравенства на -1 и изменив при этом знак неравенства на противоположный, получим равносильное ему неравенство

Неравенство
Разложим числитель и знаменатель алгебраической дроби Выражение на множители. В числителе все просто: Выражение
Чтобы разложить на множители содержащийся в знаменателе дроби квадратный трехчлен Выражение

(мы снова воспользовались формулой разложения на множители квадратного трехчлена).
Тем самым заданное неравенство мы привели к виду

Выражение
Рассмотрим выражение

Выражение
Числитель этой дроби обращается в 0 в точке Al227.jpg а знаменатель — в точках Al228.jpg Отметим эти точки на числовой прямой (рис. 14), которая разбивается указанными точками на четыре промежутка, причем на каждом промежутке выражение f (х) сохраняет постоянный знак (эти знаки указаны на рис. 14). Нас интересуют те промежутки, на которых выполняется неравенство fх < 0; эти промежутки выделены штриховкой на рис. 15. По условию, нас интересуют и те точки х, в которых выполняется равенство f (х) = 0. Такая точка только одна — это точка Al229.jpg поскольку лишь при этом значении числитель дроби f (х) обращается в нуль. Точка Al229.jpg отмечена на рис. 15 темным кружочком. Таким образом, на рис. 15 представлена геометрическая модель решения заданного неравенства, от которой нетрудно перейти к аналитической записи.

Числовая прямая
Во всех рассмотренных примерах мы преобразовывали заданное неравенство в равносильное ему неравенство вида f {х) > 0 или f (x) <0,где Неравенство
При этом количество множителей в числителе и знаменателе дроби может быть любым. Затем отмечали на числовой прямой точки а,Ь,с,д. и определяли знаки выражения f (х) на выделенных промежутках. Заметили, что на самом правом из выделенных промежутков выполняется неравенство f (х) > 0, а далее по промежуткам знаки выражения f (х) чередуются (см. рис. 16а). Это чередование удобно иллюстрировать с помощью волнообразной кривой, которая чертится справа налево и сверху вниз (рис. 166). На тех промежутках, где эта кривая (ее иногда называют кривой знаков) расположена выше оси х, выполняется неравенство f (х) > 0; где эта кривая расположена ниже оси х, выполняется неравенство f (х) < 0.

Числовая прямая
Пример 5. Решить неравенство

Неравенство
Решение. Имеем

Неравенство
(обе части предыдущего неравенства умножили на положительное число 6).
Чтобы воспользоваться методом интервалов, отметим на числовой прямой точки Точки (в этих точках числитель дроби, содержащейся в левой части неравенства, обращается в нуль) и точки Точки (в этих точках знаменатель указанной дроби обращается в нуль). Обычно точки отмечают схематически, учитывая порядок их следования (какое — правее, какое — левее) и не особенно обращая внимания на соблюдение масштаба. Ясно, что Неравенство  Сложнее обстоит дело с числами Числа Первая прикидка показывает, что и то и другое число чуть больше, чем 2,6, откуда нельзя сделать вывод о том, какое из указанных чисел больше, а какое — меньше. Предположим (наугад), что Неравенство Тогда Неравенство
Получилось верное неравенство, значит, наша догадка подтвердилась: на самом деле Неравенство
Итак,
Неравенство
Отметим указанные 5 точек в указанном порядке на числовой прямой (рис. 17а). Расставим знаки выражения Выражение
на полученных промежутках: на самом правом — знак +, а далее знаки чередуются (рис. 176). Начертим кривую знаков и выделим (штриховкой) те промежутки, на которых выполняется интересующее нас неравенство f (x) > 0 (рис. 17в). Учтем, наконец, что речь идет о нестрогом неравенстве f (x) > 0, значит, нас интересуют и те точки, в которых выражение f (x) обращается в нуль. Это — корни числителя дроби f (x), т.е. точки Точки отметим их на рис. 17в темными кружочками (и, естественно, включим в ответ). Вот теперь рис. 17в дает полную геометрическую модель решений заданного неравенства.


А.Г. Мордкович Алгебра 9 класс


Материалы по математике онлайн, задачи и ответы по классам, планы конспектов уроков по математике скачать

Содержание урока
1236084776 kr.jpg конспект урока                       
1236084776 kr.jpg опорный каркас  
1236084776 kr.jpg презентация урока
1236084776 kr.jpg акселеративные методы 
1236084776 kr.jpg интерактивные технологии 

Практика
1236084776 kr.jpg задачи и упражнения 
1236084776 kr.jpg самопроверка
1236084776 kr.jpg практикумы, тренинги, кейсы, квесты
1236084776 kr.jpg домашние задания
1236084776 kr.jpg дискуссионные вопросы
1236084776 kr.jpg риторические вопросы от учеников

Иллюстрации
1236084776 kr.jpg аудио-, видеоклипы и мультимедиа 
1236084776 kr.jpg фотографии, картинки 
1236084776 kr.jpg графики, таблицы, схемы
1236084776 kr.jpg юмор, анекдоты, приколы, комиксы
1236084776 kr.jpg притчи, поговорки, кроссворды, цитаты

Дополнения
1236084776 kr.jpg рефераты
1236084776 kr.jpg статьи 
1236084776 kr.jpg фишки для любознательных 
1236084776 kr.jpg шпаргалки 
1236084776 kr.jpg учебники основные и дополнительные
1236084776 kr.jpg словарь терминов                          
1236084776 kr.jpg прочие 

Совершенствование учебников и уроков
1236084776 kr.jpg исправление ошибок в учебнике
1236084776 kr.jpg обновление фрагмента в учебнике 
1236084776 kr.jpg элементы новаторства на уроке 
1236084776 kr.jpg замена устаревших знаний новыми 

Только для учителей
1236084776 kr.jpg идеальные уроки 
1236084776 kr.jpg календарный план на год  
1236084776 kr.jpg методические рекомендации  
1236084776 kr.jpg программы
1236084776 kr.jpg обсуждения


Интегрированные уроки


Если у вас есть исправления или предложения к данному уроку, напишите нам.

Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум.