|
|
Строка 1: |
Строка 1: |
- | <metakeywords>Гипермаркет Знаний - первый в мире!, Гипермаркет Знаний, Математика, 8 класс, Алгебра, урок, на Тему, Множество действительных чисел</metakeywords> | + | <metakeywords>Гипермаркет Знаний - первый в мире!, Гипермаркет Знаний, Математика, 8 класс, Алгебра, урок, на Тему, Множество действительных чисел, рациональных чисел, десятичные дроби, координатной прямой, координату, квадрата, отрицательного числа, больше или, десятичных дробей</metakeywords> |
| | | |
- | '''[[Гипермаркет знаний - первый в мире!|Гипермаркет знаний]]>>[[Математика|Математика]]>>[[Математика 8 класс|Математика 8 класс]]>>Математика:Множество действительных чисел''' | + | '''[[Гипермаркет знаний - первый в мире!|Гипермаркет знаний]]>>[[Математика|Математика]]>>[[Математика 8 класс|Математика 8 класс]]>>Математика:Множество действительных чисел'''<br> |
| | | |
| <br> | | <br> |
| | | |
| + | '''Множество действительных чисел'''<br> |
| | | |
| + | <br>Если множество '''[[Конспект уроку на тему «Координатна пряма. Раціональні числа»|рациональных чисел]]''' дополнить множеством иррациональных чисел, то вместе они составят множество действительных чисел. Множество действительных чисел обычно обозначают буквой R; используют также символическую запись (-оо, +оо) или (-оо, оо). |
| | | |
- | ''' МНОЖЕСТВО ДЕЙСТВИТЕЛЬНЫХ ЧИСЕЛ '''<br> | + | Множество действительных чисел можно описать так: это множество конечных и бесконечных десятичных дробей; конечные '''[[Задачі до уроку «Порівняння десяткових дробів.»|десятичные дроби]]''' и бесконечные десятичные периодические дроби — рациональные числа, а бесконечные десятичные непериодические дроби — иррациональные числа. <br> |
| | | |
- | <br>Если множество рациональных чисел дополнить множеством иррациональных чисел, то вместе они составят множество действительных чисел. Множество действительных чисел обычно обозначают буквой R; используют также символическую запись (-оо, +оо) или (-оо, оо).
| + | Каждое действительное число можно изобразить точкой на '''[[Порівняння натуральних чисел за допомогою координатного променя. Презентація уроку|координатной прямой]]'''. Верно и обратное: каждая точка координатной прямой имеет действительную координату. Математики обычно, говорят так: между множеством R действительных чисел и множеством точек координатной прямой установлено взаимно однозначное со ответствие. Координатная прямая есть геометрическая модель множества действительных чисел; по этой причине для координатной прямой часто используют термин числовая прямая. <br> |
| | | |
- | Множество действительных чисел можно описать так: это множество конечных и бесконечных десятичных дробей; конечные десятичные дроби и бесконечные десятичные периодические дроби — рациональные числа, а бесконечные десятичные непериодические дроби — иррациональные числа. <br>
| + | Вдумайтесь в этот термин: не кажется ли он вам противоестественным? Ведь число — объект алгебры, а прямая — объект геометрии. Нет ли тут «смешения жанров»? Нет, все логично, все продумано. Этот термин в очередной раз подчеркивает единство различных областей математики, дает возможность отождествления понятий «действительное число» и «точка на координатной (числовой) прямой». |
| | | |
- | Каждое действительное число можно изобразить точкой на координатной прямой. Верно и обратное: каждая точка координатной прямой имеет действительную координату. Математики обычно, говорят так: между множеством R действительных чисел и множеством точек координатной прямой установлено взаимно однозначное со ответствие. Координатная прямая есть геометрическая модель множества действительных чисел; по этой причине для координатной прямой часто используют термин числовая прямая. <br>
| + | Обратите внимание: координатной прямой вы пользовались начиная с 5-го класса. Но, оказывается, в ваших знаниях был вполне оправданный пробел: не для любой точки координатной прямой вы сумели бы найти '''[[Шкалы и координаты|координату]]''' — просто учитель оберегал вас от такой неприятности. <br> |
| | | |
- | Вдумайтесь в этот термин: не кажется ли он вам противоестественным? Ведь число — объект алгебры, а прямая — объект геометрии. Нет ли тут «смешения жанров»? Нет, все логично, все продумано. Этот термин в очередной раз подчеркивает единство различных областей математики, дает возможность <br>отождествления понятий «действительное число» и «точка на координатной (числовой) прямой».
| + | [[Image:14-06-119.jpg|240px|Задание]]<br> |
| | | |
- | Обратите внимание: координатной прямой вы пользовались начиная с 5-го класса. Но, оказывается, в ваших знаниях был вполне оправданный пробел: не для любой точки координатной прямой вы сумели бы найти координату — просто учитель оберегал вас от такой неприятности. <br>
| + | Рассмотрим пример. Дана координатная прямая, на ее единичном отрезке построен квадрат (рис. 100), диагональ квадрата ОВ отложена на координатной прямой от точки О вправо, получилась точка D. Чему равна координата точки D? Она равна длине диагонали '''[[Прямокутник, квадрат, їх периметри. Презентація уроку|квадрата]]''', т. е. [[Image:14-06-118.jpg]] . Это число, как мы теперь знаем, не целое и не дробь. Значит, ни в 5-м, ни в 6-м, ни в 7-м классе координату точки D вы бы найти не смогли. |
| | | |
- | <br> | + | Потому мы до сих пор и говорили «координатная прямая», а не «числовая прямая». <br> |
| | | |
- | [[Image:14-06-119.jpg]]<br>
| + | Заметим, что был еще один оправданный пробел в ваших знаниях по алгебре. Рассматривая выражения с переменными, мы всегда подразумевали, что переменные могут принимать любые допустимые значения, но только рациональные, ведь других-то не было. На самом деле переменные могут принимать любые допустимые действительные значения. Например, в тождестве (а + Ь){а-b) = а<sup>2</sup>-b<sup>2</sup> в роли а и b могут выступать любые числа, не обязательно рациональные. Этим мы уже пользовались в конце предыдущего параграфа. Этим же мы пользовались и в § 18 — в частности, в примерах 6, 7, 8 из указанного параграфа. |
| | | |
- | Рассмотрим пример. Дана координатная прямая, на ее единичном отрезке построен квадрат (рис. 100), диагональ квадрата ОВ отложена на координатной прямой от точки О вправо, получилась точка D. Чему равна координата точки D? Она равна длине диагонали квадрата, т. е. [[Image:14-06-118.jpg]] . Это число, как <br>мы теперь знаем, не целое и не дробь. Значит, ни в 5-м, ни в 6-м, ни в 7-м классе координату точки D вы бы найти не смогли.
| + | Для действительных чисел а, b, с выполняются привычные [http://xvatit.com/busines/strahovanie-zakon/ '''законы''']: |
| | | |
- | Потому мы до сих пор и говорили «координатная прямая», а не «числовая прямая». <br>
| + | а + b = b + а; |
| | | |
- | Заметим, что был еще один оправданный пробел в ваших знаниях по алгебре. Рассматривая выражения с переменными, мы всегда подразумевали, что переменные могут принимать любые допустимые значения, но только рациональные, ведь других-то не было. На самом деле переменные могут принимать <br>любые допустимые действительные значения. Например, в тождестве <br>(а + Ь){а-b) = а<sup>2</sup>-b<sup>2</sup> в роли а и b могут выступать любые числа, не обязательно <br>рациональные. Этим мы уже пользовались в конце предыдущего параграфа. Этим же мы пользовались и в § 18 — в частности, в примерах 6, 7, 8 из указанного параграфа.
| + | аЬ = bа; |
| | | |
- | Для действительных чисел а, b, с выполняются привычные законы: <br>а + b = b + а; <br>аЬ = bа;
| + | a + (b + c) = (a + b) + c<br> |
| | | |
- | a + (b + c) = (a + b) + c<br> | + | a(bc) =(ab)c |
| | | |
- | a(bc) =(ab)c<br>(а + b) с = ас + bc и т. д. <br>Выполняются и привычные правила: произведение (частное) двух положительных чисел — положительное число; <br>произведение (частное) двух отрицательных чисел — положительное число; <br>произведение (частное) положительного и отрицательного числа — отрицательное число. <br>
| + | (а + b) с = ас + bc и т. д. |
| | | |
- | Действительные числа можно сравнивать друг с другом, используя следующее определение. <br>
| + | Выполняются и привычные правила: произведение (частное) двух положительных чисел — положительное число; <br>произведение (частное) двух отрицательных чисел — положительное число; произведение (частное) положительного и '''[[Презентація уроку на тему «Додатні та від'ємні числа. Число 0»|отрицательного числа]]''' — отрицательное число. <br> |
| | | |
- | '''''Определение'''''. Говорят, что действительное число а больше (меньше) действительного числа b, если их разность а - b — положительное (отрицательное) число. Пишут а > b (а < b). <br>
| + | Действительные числа можно сравнивать друг с другом, используя следующее определение. <br> |
| | | |
- | Из этого определения следует, что всякое положительное число а больше нуля (поскольку разность а - 0 = а — положительное число), а всякое отрицательное число b меньше нуля (поскольку разность b - 0 = b — отрицательное число). <br>
| + | '''''Определение'''''. Говорят, что действительное число а больше (меньше) действительного числа b, если их разность а - b — положительное (отрицательное) число. Пишут а > b (а < b). <br> |
| | | |
- | Итак, а > 0 означает, что а — положительное число; <br>а < 0 означает, что а — отрицательное число; <br>а>b означает, что а -b — положительное число, т. е. а - b > 0; <br>a<b означает, что а - b — отрицательное число, <br>т.е. а - b < 0. <br>Наряду со знаками строгих неравенств (<, >) используют знаки нестрогих неравенств: <br>а [[Image:14-06-120.jpg]] 0 означает, что а больше нуля или равно нулю, т. е. а — неотрицательное число (положительное или 0), или что а не меньше нуля; <br>а [[Image:14-06-121.jpg]] 0 означает, что а меньше нуля или равно нулю, т. е. а — неположительное число (отрицательное или 0), или что а не больше нуля; <br>а[[Image:14-06-120.jpg]] b означает, что а больше или равно b, т. е. а - b — неотрицательное число, или что а не меньше b; а - b [[Image:14-06-120.jpg]] 0; <br>а [[Image:14-06-121.jpg]] b означает, что а меньше или равно b, т. е. а - b — неположительное число, или что а не больше Ь; а - b [[Image:14-06-121.jpg]] 0. <br>Например, для любого числа а верно неравенство а<sup>2</sup> [[Image:14-06-120.jpg]] 0; <br>для любых чисел а и b верно неравенство (а - b)<sup>2</sup> [[Image:14-06-120.jpg]] 0. <br>Впрочем, для сравнения действительных чисел необязательно каждый раз составлять их разность и выяснять, положительна она или отрицательна. Можно сделать соответствующий вывод, сравнивая записи чисел в виде десятичных дробей. | + | Из этого определения следует, что всякое положительное число а больше нуля (поскольку разность а - 0 = а — положительное число), а всякое отрицательное число b меньше нуля (поскольку разность b - 0 = b — отрицательное число). <br> |
| + | |
| + | Итак, а > 0 означает, что а — положительное число; |
| + | |
| + | а < 0 означает, что а — отрицательное число; <br>а>b означает, что а -b — положительное число, т. е. а - b > 0; <br>a<b означает, что а - b — отрицательное число, <br>т.е. а - b < 0. |
| + | |
| + | Наряду со знаками строгих неравенств (<, >) используют знаки нестрогих неравенств: |
| + | |
| + | а [[Image:14-06-120.jpg]] 0 означает, что а больше нуля или равно нулю, т. е. а — неотрицательное число (положительное или 0), или что а не меньше нуля; |
| + | |
| + | а [[Image:14-06-121.jpg]] 0 означает, что а меньше нуля или равно нулю, т. е. а — неположительное число (отрицательное или 0), или что а не больше нуля; |
| + | |
| + | а[[Image:14-06-120.jpg]] b означает, что а '''[[Меньше или больше|больше или]]''' равно b, т. е. а - b — неотрицательное число, или что а не меньше b; а - b [[Image:14-06-120.jpg]] 0; |
| + | |
| + | а [[Image:14-06-121.jpg]] b означает, что а меньше или равно b, т. е. а - b — неположительное число, или что а не больше Ь; а - b [[Image:14-06-121.jpg]] 0. <br>Например, для любого числа а верно неравенство а<sup>2</sup> [[Image:14-06-120.jpg]] 0; |
| + | |
| + | для любых чисел а и b верно неравенство (а - b)<sup>2</sup> [[Image:14-06-120.jpg]] 0. <br>Впрочем, для сравнения действительных чисел необязательно каждый раз составлять их разность и выяснять, положительна она или отрицательна. Можно сделать соответствующий вывод, сравнивая записи чисел в виде '''[[Задачі до уроку «Порівняння десяткових дробів.»|десятичных дробей]]'''. |
| | | |
| Геометрическая модель множества действительных чисел, т. е. числовая прямая, делает операцию сравнения чисел особенно наглядной: из двух чисел а, b больше то, которое располагается на числовой прямой правее. | | Геометрическая модель множества действительных чисел, т. е. числовая прямая, делает операцию сравнения чисел особенно наглядной: из двух чисел а, b больше то, которое располагается на числовой прямой правее. |
Строка 49: |
Строка 67: |
| '''Пример 1.''' Сравнить числа: | | '''Пример 1.''' Сравнить числа: |
| | | |
- | [[Image:14-06-122.jpg]]<br><br>'''Пример 2.''' Расположить в порядке возрастания числа | + | [[Image:14-06-122.jpg|480px|Задание]]<br><br>'''Пример 2.''' Расположить в порядке возрастания числа |
| | | |
- | [[Image:14-06-123.jpg]] | + | [[Image:14-06-123.jpg|180px|Задание]] |
| | | |
- | [[Image:14-06-124.jpg]]<br><br><br><br> | + | [[Image:14-06-124.jpg|480px|Решение]]<br>''<br>Мордкович А. Г., Алгебра. 8 кл.: Учеб. для общеобразоват. учреждений.— 3-е изд., доработ. — М.: Мнемозина, 2001. — 223 с: ил. ''<br> |
| | | |
- | <br> | + | <br> |
| | | |
| <sub>Планирование математике, материалы по математике 8 класса [[Математика|скачать]], учебники [[Гипермаркет знаний - первый в мире!|онлайн]] </sub> | | <sub>Планирование математике, материалы по математике 8 класса [[Математика|скачать]], учебники [[Гипермаркет знаний - первый в мире!|онлайн]] </sub> |
Строка 62: |
Строка 80: |
| | | |
| '''<u>Содержание урока</u>''' | | '''<u>Содержание урока</u>''' |
- | <u></u>'''[[Image:1236084776 kr.jpg|10x10px]] конспект урока ''' | + | <u></u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] конспект урока ''' |
- | [[Image:1236084776 kr.jpg|10x10px]] опорный каркас | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] опорный каркас |
- | [[Image:1236084776 kr.jpg|10x10px]] презентация урока | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] презентация урока |
- | [[Image:1236084776 kr.jpg|10x10px]] акселеративные методы | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] акселеративные методы |
- | [[Image:1236084776 kr.jpg|10x10px]] интерактивные технологии | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] интерактивные технологии |
| | | |
| '''<u>Практика</u>''' | | '''<u>Практика</u>''' |
- | [[Image:1236084776 kr.jpg|10x10px]] задачи и упражнения | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] задачи и упражнения |
- | [[Image:1236084776 kr.jpg|10x10px]] самопроверка | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] самопроверка |
- | [[Image:1236084776 kr.jpg|10x10px]] практикумы, тренинги, кейсы, квесты | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] практикумы, тренинги, кейсы, квесты |
- | [[Image:1236084776 kr.jpg|10x10px]] домашние задания | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] домашние задания |
- | [[Image:1236084776 kr.jpg|10x10px]] дискуссионные вопросы | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] дискуссионные вопросы |
- | [[Image:1236084776 kr.jpg|10x10px]] риторические вопросы от учеников | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] риторические вопросы от учеников |
- |
| + | |
| '''<u>Иллюстрации</u>''' | | '''<u>Иллюстрации</u>''' |
- | <u></u>'''[[Image:1236084776 kr.jpg|10x10px]] аудио-, видеоклипы и мультимедиа ''' | + | <u></u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] аудио-, видеоклипы и мультимедиа ''' |
- | [[Image:1236084776 kr.jpg|10x10px]] фотографии, картинки | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] фотографии, картинки |
- | [[Image:1236084776 kr.jpg|10x10px]] графики, таблицы, схемы | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] графики, таблицы, схемы |
- | [[Image:1236084776 kr.jpg|10x10px]] юмор, анекдоты, приколы, комиксы | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] юмор, анекдоты, приколы, комиксы |
- | [[Image:1236084776 kr.jpg|10x10px]] притчи, поговорки, кроссворды, цитаты | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] притчи, поговорки, кроссворды, цитаты |
| | | |
| '''<u>Дополнения</u>''' | | '''<u>Дополнения</u>''' |
- | <u></u>'''[[Image:1236084776 kr.jpg|10x10px]] рефераты''' | + | <u></u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] рефераты''' |
- | [[Image:1236084776 kr.jpg|10x10px]] статьи | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] статьи |
- | [[Image:1236084776 kr.jpg|10x10px]] фишки для любознательных | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] фишки для любознательных |
- | [[Image:1236084776 kr.jpg|10x10px]] шпаргалки | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] шпаргалки |
- | [[Image:1236084776 kr.jpg|10x10px]] учебники основные и дополнительные | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] учебники основные и дополнительные |
- | [[Image:1236084776 kr.jpg|10x10px]] словарь терминов | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] словарь терминов |
- | [[Image:1236084776 kr.jpg|10x10px]] прочие | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] прочие |
| '''<u></u>''' | | '''<u></u>''' |
| <u>Совершенствование учебников и уроков | | <u>Совершенствование учебников и уроков |
- | </u>'''[[Image:1236084776 kr.jpg|10x10px]] исправление ошибок в учебнике''' | + | </u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] исправление ошибок в учебнике''' |
- | [[Image:1236084776 kr.jpg|10x10px]] обновление фрагмента в учебнике | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] обновление фрагмента в учебнике |
- | [[Image:1236084776 kr.jpg|10x10px]] элементы новаторства на уроке | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] элементы новаторства на уроке |
- | [[Image:1236084776 kr.jpg|10x10px]] замена устаревших знаний новыми | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] замена устаревших знаний новыми |
- |
| + | |
| '''<u>Только для учителей</u>''' | | '''<u>Только для учителей</u>''' |
- | <u></u>'''[[Image:1236084776 kr.jpg|10x10px]] идеальные уроки ''' | + | <u></u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] идеальные уроки ''' |
- | [[Image:1236084776 kr.jpg|10x10px]] календарный план на год | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] календарный план на год |
- | [[Image:1236084776 kr.jpg|10x10px]] методические рекомендации | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] методические рекомендации |
- | [[Image:1236084776 kr.jpg|10x10px]] программы | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] программы |
- | [[Image:1236084776 kr.jpg|10x10px]] обсуждения | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] обсуждения |
| | | |
| | | |
Текущая версия на 14:43, 8 октября 2012
Гипермаркет знаний>>Математика>>Математика 8 класс>>Математика:Множество действительных чисел
Множество действительных чисел
Если множество рациональных чисел дополнить множеством иррациональных чисел, то вместе они составят множество действительных чисел. Множество действительных чисел обычно обозначают буквой R; используют также символическую запись (-оо, +оо) или (-оо, оо).
Множество действительных чисел можно описать так: это множество конечных и бесконечных десятичных дробей; конечные десятичные дроби и бесконечные десятичные периодические дроби — рациональные числа, а бесконечные десятичные непериодические дроби — иррациональные числа.
Каждое действительное число можно изобразить точкой на координатной прямой. Верно и обратное: каждая точка координатной прямой имеет действительную координату. Математики обычно, говорят так: между множеством R действительных чисел и множеством точек координатной прямой установлено взаимно однозначное со ответствие. Координатная прямая есть геометрическая модель множества действительных чисел; по этой причине для координатной прямой часто используют термин числовая прямая.
Вдумайтесь в этот термин: не кажется ли он вам противоестественным? Ведь число — объект алгебры, а прямая — объект геометрии. Нет ли тут «смешения жанров»? Нет, все логично, все продумано. Этот термин в очередной раз подчеркивает единство различных областей математики, дает возможность отождествления понятий «действительное число» и «точка на координатной (числовой) прямой».
Обратите внимание: координатной прямой вы пользовались начиная с 5-го класса. Но, оказывается, в ваших знаниях был вполне оправданный пробел: не для любой точки координатной прямой вы сумели бы найти координату — просто учитель оберегал вас от такой неприятности.
Рассмотрим пример. Дана координатная прямая, на ее единичном отрезке построен квадрат (рис. 100), диагональ квадрата ОВ отложена на координатной прямой от точки О вправо, получилась точка D. Чему равна координата точки D? Она равна длине диагонали квадрата, т. е. . Это число, как мы теперь знаем, не целое и не дробь. Значит, ни в 5-м, ни в 6-м, ни в 7-м классе координату точки D вы бы найти не смогли.
Потому мы до сих пор и говорили «координатная прямая», а не «числовая прямая».
Заметим, что был еще один оправданный пробел в ваших знаниях по алгебре. Рассматривая выражения с переменными, мы всегда подразумевали, что переменные могут принимать любые допустимые значения, но только рациональные, ведь других-то не было. На самом деле переменные могут принимать любые допустимые действительные значения. Например, в тождестве (а + Ь){а-b) = а2-b2 в роли а и b могут выступать любые числа, не обязательно рациональные. Этим мы уже пользовались в конце предыдущего параграфа. Этим же мы пользовались и в § 18 — в частности, в примерах 6, 7, 8 из указанного параграфа.
Для действительных чисел а, b, с выполняются привычные законы:
а + b = b + а;
аЬ = bа;
a + (b + c) = (a + b) + c
a(bc) =(ab)c
(а + b) с = ас + bc и т. д.
Выполняются и привычные правила: произведение (частное) двух положительных чисел — положительное число; произведение (частное) двух отрицательных чисел — положительное число; произведение (частное) положительного и отрицательного числа — отрицательное число.
Действительные числа можно сравнивать друг с другом, используя следующее определение.
Определение. Говорят, что действительное число а больше (меньше) действительного числа b, если их разность а - b — положительное (отрицательное) число. Пишут а > b (а < b).
Из этого определения следует, что всякое положительное число а больше нуля (поскольку разность а - 0 = а — положительное число), а всякое отрицательное число b меньше нуля (поскольку разность b - 0 = b — отрицательное число).
Итак, а > 0 означает, что а — положительное число;
а < 0 означает, что а — отрицательное число; а>b означает, что а -b — положительное число, т. е. а - b > 0; a<b означает, что а - b — отрицательное число, т.е. а - b < 0.
Наряду со знаками строгих неравенств (<, >) используют знаки нестрогих неравенств:
а 0 означает, что а больше нуля или равно нулю, т. е. а — неотрицательное число (положительное или 0), или что а не меньше нуля;
а 0 означает, что а меньше нуля или равно нулю, т. е. а — неположительное число (отрицательное или 0), или что а не больше нуля;
а b означает, что а больше или равно b, т. е. а - b — неотрицательное число, или что а не меньше b; а - b 0;
а b означает, что а меньше или равно b, т. е. а - b — неположительное число, или что а не больше Ь; а - b 0. Например, для любого числа а верно неравенство а2 0;
для любых чисел а и b верно неравенство (а - b)2 0. Впрочем, для сравнения действительных чисел необязательно каждый раз составлять их разность и выяснять, положительна она или отрицательна. Можно сделать соответствующий вывод, сравнивая записи чисел в виде десятичных дробей.
Геометрическая модель множества действительных чисел, т. е. числовая прямая, делает операцию сравнения чисел особенно наглядной: из двух чисел а, b больше то, которое располагается на числовой прямой правее.
Таким образом, к сравнению действительных чисел нужно подходить достаточно гибко, что мы и используем в следующем примере.
Пример 1. Сравнить числа:
Пример 2. Расположить в порядке возрастания числа
Мордкович А. Г., Алгебра. 8 кл.: Учеб. для общеобразоват. учреждений.— 3-е изд., доработ. — М.: Мнемозина, 2001. — 223 с: ил.
Планирование математике, материалы по математике 8 класса скачать, учебники онлайн
Содержание урока
конспект урока
опорный каркас
презентация урока
акселеративные методы
интерактивные технологии
Практика
задачи и упражнения
самопроверка
практикумы, тренинги, кейсы, квесты
домашние задания
дискуссионные вопросы
риторические вопросы от учеников
Иллюстрации
аудио-, видеоклипы и мультимедиа
фотографии, картинки
графики, таблицы, схемы
юмор, анекдоты, приколы, комиксы
притчи, поговорки, кроссворды, цитаты
Дополнения
рефераты
статьи
фишки для любознательных
шпаргалки
учебники основные и дополнительные
словарь терминов
прочие
Совершенствование учебников и уроков
исправление ошибок в учебнике
обновление фрагмента в учебнике
элементы новаторства на уроке
замена устаревших знаний новыми
Только для учителей
идеальные уроки
календарный план на год
методические рекомендации
программы
обсуждения
Интегрированные уроки
Если у вас есть исправления или предложения к данному уроку, напишите нам.
Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум.
|