| 
 
 
			
			
			
			
		
		|  |  |  | Строка 1: | Строка 1: |  |  | '''[[Гипермаркет знаний - первый в мире!|Гипермаркет знаний]]>>[[Математика|Математика]]>>[[Математика 9 класс|Математика 9 класс]]>>Математика: Геометрическая прогрессия<metakeywords>Геометрическая прогрессия</metakeywords>'''   |  | '''[[Гипермаркет знаний - первый в мире!|Гипермаркет знаний]]>>[[Математика|Математика]]>>[[Математика 9 класс|Математика 9 класс]]>>Математика: Геометрическая прогрессия<metakeywords>Геометрическая прогрессия</metakeywords>'''   |  |  |  |  |  |  | - | <br>'''ГЕОМЕТРИЧЕСКАЯ ПРОГРЕССИЯ'''<br>Для удобства читателя этот параграф строится точно по тому же плану, которого мы придерживались в предыдущем параграфе.<br>'''1.''' Основные понятия.<br>'''Определение.''' Числовую последовательность, все члены которой отличны от 0 и каждый член которой, начиная со второго, получается из предыдущего члена умножением его на одно и то же число называют геометрической прогрессией. При этом число 5 называют знаменателем геометрической прогрессии.<br>Таким образом, геометрическая прогрессия — это числовая последовательность (b<sub>n</sub>), заданная рекуррентно соотношениями<br>[[Image:Al9171.jpg]]<br>Можно ли, глядя на числовую последовательность, определить, является ли она геометрической прогрессией? Можно. Если вы убедились в том, что<br>отношение любого члена последовательности к предыдущему члену постоянно [[Image:Al9172.jpg]] то перед вами— геометрическая прогрессия.<br>'''Пример 1.''' 1, 3, 9, 27, 81,... .<br>Это геометрическая прогрессия, у которой Ь<sub>1</sub> = 1, q = 3.<br>'''Пример 2.''' [[Image:Al9173.jpg]]<br>Это геометрическая прогрессия, у которой [[Image:Al9174.jpg]]<br>'''Пример 3.''' [[Image:Al9175.jpg]]<br>Это геометрическая прогрессия, у которой [[Image:Al9176.jpg]]<br>'''Пример 4.''' 8, 8, 8, 8, 8, 8,....<br>Это геометрическая прогрессия, у которой b<sub>1</sub> — 8, q = 1.<br>Заметим, что эта последовательность является и арифметической прогрессией (см. пример 3 из § 15).<br>'''Пример 5.''' 2,-2,2,-2,2,-2.....<br>Это геометрическая прогрессия, у которой b<sub>1</sub> = 2, q = -1.<br>Очевидно, что геометрическая прогрессия является возрастающей последовательностью, если b<sub>1</sub> > 0, q > 1 (см. пример 1), и убывающей, если b<sub>1</sub>> 0, 0 < q < 1 (см. пример 2).<br>Для обозначения того, что последовательность (b<sub>n</sub>) является геометрической прогрессией, иногда бывает удобна следующая запись: | + | <br>'''Геометрическая прогрессия''' |  |  | + |   |  |  | + | <br>Для удобства читателя этот параграф строится точно по тому же плану, которого мы придерживались в предыдущем параграфе. |  |  | + |   |  |  | + | '''1. Основные понятия.''' |  |  | + |   |  |  | + | '''Определение.''' Числовую последовательность, все члены которой отличны от 0 и каждый член которой, начиная со второго, получается из предыдущего члена умножением его на одно и то же число называют геометрической прогрессией. При этом число 5 называют знаменателем геометрической прогрессии. |  |  | + |   |  |  | + | Таким образом, геометрическая прогрессия — это числовая последовательность (b<sub>n</sub>), заданная рекуррентно соотношениями |  |  | + |   |  |  | + | <br>[[Image:Al9171.jpg]]<br>Можно ли, глядя на числовую последовательность, определить, является ли она геометрической прогрессией? Можно. Если вы убедились в том, что<br>отношение любого члена последовательности к предыдущему члену постоянно [[Image:Al9172.jpg]] то перед вами— геометрическая прогрессия.<br>'''Пример 1.''' 1, 3, 9, 27, 81,... .<br>Это геометрическая прогрессия, у которой Ь<sub>1</sub> = 1, q = 3.<br>'''Пример 2.''' [[Image:Al9173.jpg]]<br>Это геометрическая прогрессия, у которой [[Image:Al9174.jpg]]<br>'''Пример 3.''' [[Image:Al9175.jpg]]<br>Это геометрическая прогрессия, у которой [[Image:Al9176.jpg]]<br>'''Пример 4.''' 8, 8, 8, 8, 8, 8,....<br>Это геометрическая прогрессия, у которой b<sub>1</sub> — 8, q = 1.<br>Заметим, что эта последовательность является и арифметической прогрессией (см. пример 3 из § 15).<br>'''Пример 5.''' 2,-2,2,-2,2,-2.....<br>Это геометрическая прогрессия, у которой b<sub>1</sub> = 2, q = -1.<br>Очевидно, что геометрическая прогрессия является возрастающей последовательностью, если b<sub>1</sub> > 0, q > 1 (см. пример 1), и убывающей, если b<sub>1</sub>> 0, 0 < q < 1 (см. пример 2).<br>Для обозначения того, что последовательность (b<sub>n</sub>) является геометрической прогрессией, иногда бывает удобна следующая запись:   |  |  |  |  |  |  |  | [[Image:Al9177.jpg]]<br>Значок [[Image:Al9178.jpg]] заменяет словосочетание «геометрическая прогрессия».<br>Отметим одно любопытное и в то же время достаточно очевидное свойство геометрической прогрессии:<br>Если последовательность [[Image:Al9179.jpg]] является геометрической прогрессией, то и последовательность квадратов, т.е. [[Image:Al91710.jpg]] является геометрической прогрессией.<br>У второй геометрической прогрессии первый член равен [[Image:Al91711.jpg]] а знаменатель равен q<sup>2</sup>.<br>Если в геометрической прогрессии отбросить все члены, следующие за b<sub>n</sub>, то получится конечная геометрическая прогрессия [[Image:Al91712.jpg]] <br>В дальнейших пунктах этого параграфа мы рассмотрим наиболее важные свойства геометрической прогрессии.<br>'''2.''' Формула п-го члена геометрической прогрессии.<br>Рассмотрим геометрическую прогрессию [[Image:Al91713.jpg]] со знаменателем q. Имеем:   |  | [[Image:Al9177.jpg]]<br>Значок [[Image:Al9178.jpg]] заменяет словосочетание «геометрическая прогрессия».<br>Отметим одно любопытное и в то же время достаточно очевидное свойство геометрической прогрессии:<br>Если последовательность [[Image:Al9179.jpg]] является геометрической прогрессией, то и последовательность квадратов, т.е. [[Image:Al91710.jpg]] является геометрической прогрессией.<br>У второй геометрической прогрессии первый член равен [[Image:Al91711.jpg]] а знаменатель равен q<sup>2</sup>.<br>Если в геометрической прогрессии отбросить все члены, следующие за b<sub>n</sub>, то получится конечная геометрическая прогрессия [[Image:Al91712.jpg]] <br>В дальнейших пунктах этого параграфа мы рассмотрим наиболее важные свойства геометрической прогрессии.<br>'''2.''' Формула п-го члена геометрической прогрессии.<br>Рассмотрим геометрическую прогрессию [[Image:Al91713.jpg]] со знаменателем q. Имеем:   |  | Строка 37: | Строка 47: |  |  | [[Image:Al91742.jpg]]<br>(мы разделили обе части уравнения на выражение Ъ<sub>1</sub>q<sup>4</sup>, отличное от нуля).<br>Из уравнения q<sub>2</sub> - q - 2 = 0 находим q<sub>1</sub> = 2, q<sup>2</sup> = -1. Подставив значение q = 2 во второе уравнение системы, получим [[Image:Al91743.jpg]]<br>Подставив значение q = -1 во второе уравнение системы, получим Ь<sub>1</sub> • 1 • 0 = 48; это уравнение не имеет решений.<br>Итак, b<sub>1</sub>=1, q = 2 — эта пара является решением составленной системы уравнений.<br>Теперь мы можем записать геометрическую прогрессию, о которой идет речь в задаче: 1, 2, 4, 8, 16, 32, ... .<br>'''Третий этап.''' Ответ на вопрос задачи. Требуется вычислить b<sub>12</sub>. Имеем   |  | [[Image:Al91742.jpg]]<br>(мы разделили обе части уравнения на выражение Ъ<sub>1</sub>q<sup>4</sup>, отличное от нуля).<br>Из уравнения q<sub>2</sub> - q - 2 = 0 находим q<sub>1</sub> = 2, q<sup>2</sup> = -1. Подставив значение q = 2 во второе уравнение системы, получим [[Image:Al91743.jpg]]<br>Подставив значение q = -1 во второе уравнение системы, получим Ь<sub>1</sub> • 1 • 0 = 48; это уравнение не имеет решений.<br>Итак, b<sub>1</sub>=1, q = 2 — эта пара является решением составленной системы уравнений.<br>Теперь мы можем записать геометрическую прогрессию, о которой идет речь в задаче: 1, 2, 4, 8, 16, 32, ... .<br>'''Третий этап.''' Ответ на вопрос задачи. Требуется вычислить b<sub>12</sub>. Имеем   |  |  |  |  |  |  | - | [[Image:Al91744.jpg]]<br>О т в е т: b<sub>12</sub> = 2048.<br>'''3'''. Формула суммы членов конечной геометрической прогрессии.<br>Пусть дана конечная геометрическая прогрессия | + | [[Image:Al91744.jpg]]<br>О т в е т: b<sub>12</sub> = 2048.<br>'''3'''. Формула суммы членов конечной геометрической прогрессии.<br>Пусть дана конечная геометрическая прогрессия   |  |  |  |  |  |  | - | [[Image:al91745.jpg]]<br>Обозначим через S<sub>n</sub> сумму ее членов, т.е. | + | [[Image:Al91745.jpg]]<br>Обозначим через S<sub>n</sub> сумму ее членов, т.е.   |  |  |  |  |  |  | - | [[Image:al91746.jpg]]<br>Выведем формулу для отыскания этой суммы.<br>Начнем с самого простого случая, когда д = 1. Тогда геометрическая прогрессия Ь<sub>1</sub>, Ь<sub>2</sub>, Ь<sub>3</sub>,..., Ъп состоит из п чисел, равных Ъ<sub>1</sub>, т.е. прогрессия имеет вид Ъ<sub>1</sub>, Ъ<sub>2</sub>, Ъ<sub>3</sub>, ..., Ь<sub>4</sub>. Сумма этих чисел равна nb<sub>1</sub>.<br>Пусть теперь q = 1 Для отыскания S<sub>n</sub> применим искусственный прием: выполним некоторые преобразования выражения S<sub>n</sub>q. Имеем: | + | [[Image:Al91746.jpg]]<br>Выведем формулу для отыскания этой суммы.<br>Начнем с самого простого случая, когда д = 1. Тогда геометрическая прогрессия Ь<sub>1</sub>, Ь<sub>2</sub>, Ь<sub>3</sub>,..., Ъп состоит из п чисел, равных Ъ<sub>1</sub>, т.е. прогрессия имеет вид Ъ<sub>1</sub>, Ъ<sub>2</sub>, Ъ<sub>3</sub>, ..., Ь<sub>4</sub>. Сумма этих чисел равна nb<sub>1</sub>.<br>Пусть теперь q = 1 Для отыскания S<sub>n</sub> применим искусственный прием: выполним некоторые преобразования выражения S<sub>n</sub>q. Имеем:   |  |  |  |  |  |  | - | [[Image:al91747.jpg]]<br>Выполняя преобразования, мы, во-первых, пользовались определением геометрической прогрессии, согласно которому [[Image:al91748.jpg]] (см. третью строчку рассуждений); во-вторых, прибавили и вычли отчего значение выражения, разумеется, не изменилось (см. четвертую строчку рассуждений); в-третьих, воспользовались формулой п-го члена геометрической прогрессии: | + | [[Image:Al91747.jpg]]<br>Выполняя преобразования, мы, во-первых, пользовались определением геометрической прогрессии, согласно которому [[Image:Al91748.jpg]] (см. третью строчку рассуждений); во-вторых, прибавили и вычли отчего значение выражения, разумеется, не изменилось (см. четвертую строчку рассуждений); в-третьих, воспользовались формулой п-го члена геометрической прогрессии:   |  |  |  |  |  |  | - | [[Image:al91749.jpg]]<br>Из формулы (1) находим: | + | [[Image:Al91749.jpg]]<br>Из формулы (1) находим:   |  |  |  |  |  |  | - | [[Image:al91750.jpg]]<br>''Это — формула суммы п членов геометрической прогрессии (для случая, когда q = 1).''<br>'''Пример 8.''' Дана конечная геометрическая прогрессия | + | [[Image:Al91750.jpg]]<br>''Это — формула суммы п членов геометрической прогрессии (для случая, когда q = 1).''<br>'''Пример 8.''' Дана конечная геометрическая прогрессия   |  |  |  |  |  |  | - | [[Image:al91751.jpg]] | + | [[Image:Al91751.jpg]]   |  |  |  |  |  |  |  | а)    сумму членов прогрессии; б) сумму квадратов ее членов.   |  | а)    сумму членов прогрессии; б) сумму квадратов ее членов.   |  |  |  |  |  |  | - | '''Р е ш е н и е. а)''' Имеем | + | '''Р е ш е н и е. а)''' Имеем   |  |  |  |  |  |  | - | [[Image:al91752.jpg]]<br>'''б)'''    Выше (см. с. 132) мы уже отмечали, что если все члены геометрической прогрессии возвести в квадрат, то получится геометрическая прогрессия с первым членом Ь<sub>2</sub> и знаменателем q<sub>2</sub>. Тогда сумма шести членов новой прогрессии будет вычисляться по<br>[[Image:al91753.jpg]]<br>'''Пример 9.''' Найти 8-й член геометрической прогрессии, у которой [[Image:al91754.jpg]]<br>'''Решение.''' [[Image:al91755.jpg]]<br>Фактически мы доказали следующую теорему.<br>'''Числовая, последовательность является геометрической прогрессией тогда и только тогда, когда квадрат каждого ее члена, кроме первого Теорема    (и последнего, в случае конечной последовательности ),равен произведению предшествующего и последующего членов (характеристическое свойство геометрической прогрессии ).<br>В предыдущем параграфе мы получили характеристическое свойство арифметической прогрессии: любой ее член равен среднему арифметическому предыдущего и последующего членов. Обратимся теперь к характеристическому свойству геометрической прогрессии и выполним некоторые преобразования равенства'''.<br><br> | + | [[Image:Al91752.jpg]]<br>'''б)'''    Выше (см. с. 132) мы уже отмечали, что если все члены геометрической прогрессии возвести в квадрат, то получится геометрическая прогрессия с первым членом Ь<sub>2</sub> и знаменателем q<sub>2</sub>. Тогда сумма шести членов новой прогрессии будет вычисляться по<br>[[Image:Al91753.jpg]]<br>'''Пример 9.''' Найти 8-й член геометрической прогрессии, у которой [[Image:Al91754.jpg]]<br>'''Решение.''' [[Image:Al91755.jpg]]<br>Фактически мы доказали следующую теорему. |  |  |  |  |  |  | - | А.Г. Мордкович Алгебра 9 класс   | + | Числовая, последовательность является геометрической прогрессией тогда и только тогда, когда квадрат каждого ее члена, кроме первого Теорема    (и последнего, в случае конечной последовательности ),равен произведению предшествующего и последующего членов (характеристическое свойство геометрической прогрессии ). |  |  | + |   |  |  | + | В предыдущем параграфе мы получили характеристическое свойство арифметической прогрессии: любой ее член равен среднему арифметическому предыдущего и последующего членов. Обратимся теперь к характеристическому свойству геометрической прогрессии и выполним некоторые преобразования равенства.<br><br>  |  |  | + |   |  |  | + | ''А.Г. Мордкович Алгебра 9 класс'' |  |  |  |  |  |  |  | <br>   |  | <br>   |  | Строка 64: | Строка 78: |  |  |  |  |  |  |  |   '''<u>Содержание урока</u>''' |  |   '''<u>Содержание урока</u>''' |  | - |   '''[[Image:1236084776 kr.jpg|10x10px]] конспект урока                       ''' | + |   '''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] конспект урока                       ''' |  | - |   [[Image:1236084776 kr.jpg|10x10px]] опорный каркас    | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] опорный каркас    |  | - |   [[Image:1236084776 kr.jpg|10x10px]] презентация урока | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] презентация урока |  | - |   [[Image:1236084776 kr.jpg|10x10px]] акселеративные методы   | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] акселеративные методы   |  | - |   [[Image:1236084776 kr.jpg|10x10px]] интерактивные технологии   | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] интерактивные технологии   |  |  |     |  |     |  |  |   '''<u>Практика</u>''' |  |   '''<u>Практика</u>''' |  | - |   [[Image:1236084776 kr.jpg|10x10px]] задачи и упражнения   | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] задачи и упражнения   |  | - |   [[Image:1236084776 kr.jpg|10x10px]] самопроверка | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] самопроверка |  | - |   [[Image:1236084776 kr.jpg|10x10px]] практикумы, тренинги, кейсы, квесты | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] практикумы, тренинги, кейсы, квесты |  | - |   [[Image:1236084776 kr.jpg|10x10px]] домашние задания | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] домашние задания |  | - |   [[Image:1236084776 kr.jpg|10x10px]] дискуссионные вопросы | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] дискуссионные вопросы |  | - |   [[Image:1236084776 kr.jpg|10x10px]] риторические вопросы от учеников | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] риторические вопросы от учеников |  | - |   
 | + |   |  |  |   '''<u>Иллюстрации</u>''' |  |   '''<u>Иллюстрации</u>''' |  | - |   '''[[Image:1236084776 kr.jpg|10x10px]] аудио-, видеоклипы и мультимедиа ''' | + |   '''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] аудио-, видеоклипы и мультимедиа ''' |  | - |   [[Image:1236084776 kr.jpg|10x10px]] фотографии, картинки   | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] фотографии, картинки   |  | - |   [[Image:1236084776 kr.jpg|10x10px]] графики, таблицы, схемы | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] графики, таблицы, схемы |  | - |   [[Image:1236084776 kr.jpg|10x10px]] юмор, анекдоты, приколы, комиксы | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] юмор, анекдоты, приколы, комиксы |  | - |   [[Image:1236084776 kr.jpg|10x10px]] притчи, поговорки, кроссворды, цитаты | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] притчи, поговорки, кроссворды, цитаты |  |  |     |  |     |  |  |   '''<u>Дополнения</u>''' |  |   '''<u>Дополнения</u>''' |  | - |   '''[[Image:1236084776 kr.jpg|10x10px]] рефераты''' | + |   '''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] рефераты''' |  | - |   [[Image:1236084776 kr.jpg|10x10px]] статьи   | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] статьи   |  | - |   [[Image:1236084776 kr.jpg|10x10px]] фишки для любознательных   | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] фишки для любознательных   |  | - |   [[Image:1236084776 kr.jpg|10x10px]] шпаргалки   | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] шпаргалки   |  | - |   [[Image:1236084776 kr.jpg|10x10px]] учебники основные и дополнительные | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] учебники основные и дополнительные |  | - |   [[Image:1236084776 kr.jpg|10x10px]] словарь терминов                            | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] словарь терминов                            |  | - |   [[Image:1236084776 kr.jpg|10x10px]] прочие   | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] прочие   |  |  |     |  |     |  |  |   <u>Совершенствование учебников и уроков |  |   <u>Совершенствование учебников и уроков |  | - |   </u>'''[[Image:1236084776 kr.jpg|10x10px]] исправление ошибок в учебнике''' | + |   </u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] исправление ошибок в учебнике''' |  | - |   [[Image:1236084776 kr.jpg|10x10px]] обновление фрагмента в учебнике   | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] обновление фрагмента в учебнике   |  | - |   [[Image:1236084776 kr.jpg|10x10px]] элементы новаторства на уроке   | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] элементы новаторства на уроке   |  | - |   [[Image:1236084776 kr.jpg|10x10px]] замена устаревших знаний новыми   | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] замена устаревших знаний новыми   |  | - |   
 | + |   |  |  |   '''<u>Только для учителей</u>''' |  |   '''<u>Только для учителей</u>''' |  | - |   '''[[Image:1236084776 kr.jpg|10x10px]] идеальные уроки ''' | + |   '''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] идеальные уроки ''' |  | - |   [[Image:1236084776 kr.jpg|10x10px]] календарный план на год    | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] календарный план на год    |  | - |   [[Image:1236084776 kr.jpg|10x10px]] методические рекомендации    | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] методические рекомендации    |  | - |   [[Image:1236084776 kr.jpg|10x10px]] программы | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] программы |  | - |   [[Image:1236084776 kr.jpg|10x10px]] обсуждения | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] обсуждения |  |  |     |  |     |  |  |     |  |     |  
 Версия 13:39, 10 октября 2012Гипермаркет знаний>>Математика>>Математика 9 класс>>Математика: Геометрическая прогрессия 
 Геометрическая прогрессия
 Для удобства читателя этот параграф строится точно по тому же плану, которого мы придерживались в предыдущем параграфе.
 1. Основные понятия.
 Определение. Числовую последовательность, все члены которой отличны от 0 и каждый член которой, начиная со второго, получается из предыдущего члена умножением его на одно и то же число называют геометрической прогрессией. При этом число 5 называют знаменателем геометрической прогрессии.
 Таким образом, геометрическая прогрессия — это числовая последовательность (bn), заданная рекуррентно соотношениями
 
  Можно ли, глядя на числовую последовательность, определить, является ли она геометрической прогрессией? Можно. Если вы убедились в том, что
 отношение любого члена последовательности к предыдущему члену постоянно
  то перед вами— геометрическая прогрессия. Пример 1. 1, 3, 9, 27, 81,... .
 Это геометрическая прогрессия, у которой Ь1 = 1, q = 3.
 Пример 2.
  Это геометрическая прогрессия, у которой
  Пример 3.
  Это геометрическая прогрессия, у которой
  Пример 4. 8, 8, 8, 8, 8, 8,....
 Это геометрическая прогрессия, у которой b1 — 8, q = 1.
 Заметим, что эта последовательность является и арифметической прогрессией (см. пример 3 из § 15).
 Пример 5. 2,-2,2,-2,2,-2.....
 Это геометрическая прогрессия, у которой b1 = 2, q = -1.
 Очевидно, что геометрическая прогрессия является возрастающей последовательностью, если b1 > 0, q > 1 (см. пример 1), и убывающей, если b1> 0, 0 < q < 1 (см. пример 2).
 Для обозначения того, что последовательность (bn) является геометрической прогрессией, иногда бывает удобна следующая запись:
  Значок
  заменяет словосочетание «геометрическая прогрессия». Отметим одно любопытное и в то же время достаточно очевидное свойство геометрической прогрессии:
 Если последовательность
  является геометрической прогрессией, то и последовательность квадратов, т.е.  является геометрической прогрессией. У второй геометрической прогрессии первый член равен
  а знаменатель равен q2. Если в геометрической прогрессии отбросить все члены, следующие за bn, то получится конечная геометрическая прогрессия
   В дальнейших пунктах этого параграфа мы рассмотрим наиболее важные свойства геометрической прогрессии.
 2. Формула п-го члена геометрической прогрессии.
 Рассмотрим геометрическую прогрессию
  со знаменателем q. Имеем:
  Нетрудно догадаться, что для любого номера п справедливо равенство
  Это — формула п-го члена геометрической прогрессии.
 Замечание. Если вы прочли важное замечание из предыдущего параграфа и поняли его, то попробуйте доказать формулу (1) методом математической индукции подобно тому, как зто было сделано для формулы п-го члена арифметической прогрессии.
 Перепишем формулу п-го члена геометрической прогрессии
   и введем обозначения:
  Получим у = mq2, или, подробнее,  Аргумент х содержится в показателе степени, поэтому такую функцию называют показательной функцией. Значит, геометрическую прогрессию можно рассматривать как показательную функцию, заданную на множестве N натуральных чисел. На рис. 96а изображен график функции
  рис. 966 — график функции  В обоих случаях имеем изолированные точки (с абсциссами х= 1, х = 2, х = 3 и т.д.), лежащие на некоторой кривой (на обоих рисунках представлена одна и та же кривая, только по-разному расположенная и изображенная в разных масштабах). Эту кривую называют экспонентой. Подробнее о показательной функции и ее графике речь пойдет в курсе алгебры 11-го класса.
  Вернемся к примерам 1—5 из предыдущего пункта.
 1) 1, 3, 9, 27, 81,... . Это геометрическая прогрессия, у которой Ь1 = 1, q = 3. Составим формулу п-го члена  2)
  Это геометрическая прогрессия, у которой  Составим формулу п-го члена 
  Это геометрическая прогрессия, у которой
  Составим формулу п-го члена  4) 8, 8, 8, ..., 8, ... . Это геометрическая прогрессия, у которой Ь1 = 8, q = 1. Составим формулу п-го члена
  5) 2, -2, 2, -2, 2, -2,.... Это геометрическая прогрессия, у которой Ъ1 = 2, q = —1. Составим формулу п-го члена
  Пример 6. Дана геометрическая прогрессия
  Р е ш е н и е. Во всех случаях в основе решения лежит формула п-го члена геометрической прогрессии
  а) Положив в формуле п-го члена геометрической прогрессии п = 6, получим
  б) Имеем
  
  Так как 512 = 29, то получаем п - 1 = 9, п = 10.
 в) Имеем 
  г) Имеем
  Пример 7. Разность между седьмым и пятым членами геометрической прогрессии равна 48, сумма пятого и шестого членов прогрессии также равна 48. Найти двенадцатый член этой прогрессии.
 Решение. Первый этап. Составление математической модели.
 Условия задачи можно кратко записать так:
 
  Воспользовавшись формулой п-го члена геометрической прогрессии, получим:
  Тогда второе условие задачи (Ь7 - Ь5 = 48) можно записать в виде
  Третье условие задачи (Ь5 + Ь6 = 48) можно записать в виде
  В итоге получаем систему двух уравнений с двумя переменными Ь1 и q:
  которая в сочетании с записанным выше условием 1) и представляет собой математическую модель задачи.
 Второй этап. Работа с составленной моделью. Приравняв левые части обоих уравнений системы, получим:
  (мы разделили обе части уравнения на выражение Ъ1q4, отличное от нуля).
 Из уравнения q2 - q - 2 = 0 находим q1 = 2, q2 = -1. Подставив значение q = 2 во второе уравнение системы, получим
  Подставив значение q = -1 во второе уравнение системы, получим Ь1 • 1 • 0 = 48; это уравнение не имеет решений.
 Итак, b1=1, q = 2 — эта пара является решением составленной системы уравнений.
 Теперь мы можем записать геометрическую прогрессию, о которой идет речь в задаче: 1, 2, 4, 8, 16, 32, ... .
 Третий этап. Ответ на вопрос задачи. Требуется вычислить b12. Имеем
  О т в е т: b12 = 2048.
 3. Формула суммы членов конечной геометрической прогрессии.
 Пусть дана конечная геометрическая прогрессия
  Обозначим через Sn сумму ее членов, т.е.
  Выведем формулу для отыскания этой суммы.
 Начнем с самого простого случая, когда д = 1. Тогда геометрическая прогрессия Ь1, Ь2, Ь3,..., Ъп состоит из п чисел, равных Ъ1, т.е. прогрессия имеет вид Ъ1, Ъ2, Ъ3, ..., Ь4. Сумма этих чисел равна nb1.
 Пусть теперь q = 1 Для отыскания Sn применим искусственный прием: выполним некоторые преобразования выражения Snq. Имеем:
  Выполняя преобразования, мы, во-первых, пользовались определением геометрической прогрессии, согласно которому
  (см. третью строчку рассуждений); во-вторых, прибавили и вычли отчего значение выражения, разумеется, не изменилось (см. четвертую строчку рассуждений); в-третьих, воспользовались формулой п-го члена геометрической прогрессии:
  Из формулы (1) находим:
  Это — формула суммы п членов геометрической прогрессии (для случая, когда q = 1).
 Пример 8. Дана конечная геометрическая прогрессия
  
 а)    сумму членов прогрессии; б) сумму квадратов ее членов. 
 Р е ш е н и е. а) Имеем 
  б)    Выше (см. с. 132) мы уже отмечали, что если все члены геометрической прогрессии возвести в квадрат, то получится геометрическая прогрессия с первым членом Ь2 и знаменателем q2. Тогда сумма шести членов новой прогрессии будет вычисляться по
 
  Пример 9. Найти 8-й член геометрической прогрессии, у которой
  Решение.
  Фактически мы доказали следующую теорему.
 Числовая, последовательность является геометрической прогрессией тогда и только тогда, когда квадрат каждого ее члена, кроме первого Теорема    (и последнего, в случае конечной последовательности ),равен произведению предшествующего и последующего членов (характеристическое свойство геометрической прогрессии ).
 В предыдущем параграфе мы получили характеристическое свойство арифметической прогрессии: любой ее член равен среднему арифметическому предыдущего и последующего членов. Обратимся теперь к характеристическому свойству геометрической прогрессии и выполним некоторые преобразования равенства.
 
 А.Г. Мордкович Алгебра 9 класс
 
 Материалы по математике онлайн, задачи и ответы по классам, планы конспектов уроков по математике скачать 
 Содержание урока
 конспект урока  опорный каркас  презентация урока  акселеративные методы  интерактивные технологии 
Практика  задачи и упражнения  самопроверка  практикумы, тренинги, кейсы, квесты  домашние задания  дискуссионные вопросы  риторические вопросы от учеников
Иллюстрации  аудио-, видеоклипы и мультимедиа  фотографии, картинки  графики, таблицы, схемы  юмор, анекдоты, приколы, комиксы  притчи, поговорки, кроссворды, цитаты
Дополнения  рефераты  статьи  фишки для любознательных  шпаргалки  учебники основные и дополнительные  словарь терминов  прочие 
Совершенствование учебников и уроков  исправление ошибок в учебнике  обновление фрагмента в учебнике  элементы новаторства на уроке  замена устаревших знаний новыми 
Только для учителей  идеальные уроки  календарный план на год  методические рекомендации  программы  обсуждения
Интегрированные уроки 
 Если у вас есть исправления или предложения к данному уроку, напишите нам. 
 Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум.
 
 
 
 |