|
|
Строка 15: |
Строка 15: |
| '' Рассмотрим различные методы представления зависимостей.''<br> | | '' Рассмотрим различные методы представления зависимостей.''<br> |
| | | |
- | '' Всякое исследование нужно начинать с выделения количественных характеристик исследуемого объекта (процесса,<br>явления). Такие характеристики называются '''величинами''''''.''''' | + | '' Всякое исследование нужно начинать с выделения количественных характеристик исследуемого объекта (процесса,<br>явления). Такие характеристики называются ''величинами'''''.''''' |
| | | |
| '' С понятием величины вы уже встречались в базовом курсе информатики. Напомним, что со всякой величиной связны три основные свойства: имя, значение, тип.''<br> | | '' С понятием величины вы уже встречались в базовом курсе информатики. Напомним, что со всякой величиной связны три основные свойства: имя, значение, тип.''<br> |
Строка 43: |
Строка 43: |
| '' Рассмотрим примеры двух других способов представления зависимостей между величинами: табличного и графического. '' | | '' Рассмотрим примеры двух других способов представления зависимостей между величинами: табличного и графического. '' |
| | | |
- | '' Представьте себе, что мы решили проверить закон свободного падения тела экспериментальным путем. Эксперимент организовали следующим образом; бросаем стальной шарик с балкона 2-го этажа, 3-го этажа (и так далее) десятиэтажного дома, замеряя высоту начального положения шарика и время падения. По результатам эксперимента мы составили таблицу и нарисовали график.<br> <br>[[Image:Инф93.jpg]]'' | + | '' Представьте себе, что мы решили проверить закон свободного падения тела экспериментальным путем. Эксперимент организовали следующим образом; бросаем стальной шарик с балкона 2-го этажа, 3-го этажа (и так далее) десятиэтажного дома, замеряя высоту начального положения шарика и время падения. По результатам эксперимента мы составили таблицу и нарисовали график.<br> <br>[[Image:Инф93.jpg]]'' |
| | | |
- | ''<br>Рис. 2.11. Табличное и графическое представление зависимости времени падения тела от высоты<br><br> Если каждую пару значений Н и t из данной таблицы подставить в приведенную выше формулу зависимости высоты от времени, то она превратится в равенство (с точностью до погрешности измерений). Значит, модель работает хорошо. (Однако если сбрасывать не стальной шарик, а большой легкий мяч, то данная модель будет меньше соответствовать формуле, а если надувной шарик, то совсем не будет соответствовать — как вы думаете, почему?)'' | + | ''<br>Рис. 2.11. Табличное и графическое представление зависимости времени падения тела от высоты<br><br> Если каждую пару значений Н и t из данной таблицы подставить в приведенную выше формулу зависимости высоты от времени, то она превратится в равенство (с точностью до погрешности измерений). Значит, модель работает хорошо. (Однако если сбрасывать не стальной шарик, а большой легкий мяч, то данная модель будет меньше соответствовать формуле, а если надувной шарик, то совсем не будет соответствовать — как вы думаете, почему?)'' |
| | | |
- | '' В этом примере мы рассмотрели три способа отображения зависимости величин: функциональный (формула), табличный и графический. Однако математической моделью процесса падения тела на землю можно назвать только формулу. Почему? Потому что формула универсальна. Она позволяет определить время падения тела с любой высоты, а не только для того экспериментального набора значений Н, который отображен на рис. 2.11.'' | + | '' В этом примере мы рассмотрели три способа отображения зависимости величин: функциональный (формула), табличный и графический. Однако математической моделью процесса падения тела на землю можно назвать только формулу. Почему? Потому что формула универсальна. Она позволяет определить время падения тела с любой высоты, а не только для того экспериментального набора значений Н, который отображен на рис. 2.11.'' |
| | | |
- | '' Кроме того, таблица и диаграмма (график) констатируют факты, а математическая модель позволяет прогнозировать, предсказывать путем расчетов .'' | + | '' Кроме того, таблица и диаграмма (график) констатируют факты, а математическая модель позволяет прогнозировать, предсказывать путем расчетов .'' |
| | | |
- | '' Точно так же тремя способами можно отобразить зависимость давления от температуры. Оба примера связаны с известными физическими законами — законами природы. Знания физических законов позволяют производить точные расчеты, они лежит в основе современной техники/<br><br><br> '''Коротко о главном'''<br><br><br> Величина — некоторая количественная характеристика объекта.'' | + | '' Точно так же тремя способами можно отобразить зависимость давления от температуры. Оба примера связаны с известными физическими законами — законами природы. Знания физических законов позволяют производить точные расчеты, они лежит в основе современной техники.<br><br><br> '''Коротко о главном'''<br><br><br> Величина — некоторая количественная характеристика объекта.'' |
| | | |
- | '' Зависимости между величинами могут быть представлены в виде математической модели, в табличной и графической формах.'' | + | '' Зависимости между величинами могут быть представлены в виде математической модели, в табличной и графической формах.'' |
| | | |
- | '' Зависимость, представленная в виде формулы, является математической моделью.<br><br><br> '''Вопросы и задания'''<br><br> 1. а) Какие вам известны формы представления зависимостей<br>между величинами?'' | + | '' Зависимость, представленная в виде формулы, является математической моделью.<br><br><br> '''Вопросы и задания'''<br><br> 1. а) Какие вам известны формы представления зависимостей<br>между величинами?'' |
| | | |
- | '' б) Что такое математическая модель?'' | + | '' б) Что такое математическая модель?'' |
| | | |
- | '' в) Может ли математическая модель включать в себя только константы?'' | + | '' в) Может ли математическая модель включать в себя только константы?'' |
| | | |
- | '' 2. Приведите пример известной вам функциональной зависимости (формулы) между характеристиками некоторой системы.'' | + | '' 2. Приведите пример известной вам функциональной зависимости (формулы) между характеристиками некоторой системы.'' |
| | | |
| '' 3. Обоснуйте преимущества и недостатки каждой из трех форм представления зависимостей.<br><br>Семакин И.Г., Хеннер Е.К., Информатика и ИКТ, 11'' | | '' 3. Обоснуйте преимущества и недостатки каждой из трех форм представления зависимостей.<br><br>Семакин И.Г., Хеннер Е.К., Информатика и ИКТ, 11'' |
Версия 19:51, 17 августа 2010
Гипермаркет знаний>>Информатика>>Информатика 11 класс>>Информатика: Представление зависимостей между величинами
Представление зависимостей между величинами
Решение задач планирования и управления постоянно требует учета зависимостей одних факторов от других. Примеры зависимостей:
1) время падения тела на землю зависит от первоначальной высоты;
2) давление зависит от температуры газа в баллоне;
3) частота заболевания жителей бронхиальной астмой зависит от качества городского воздуха.
Рассмотрим различные методы представления зависимостей.
Всякое исследование нужно начинать с выделения количественных характеристик исследуемого объекта (процесса, явления). Такие характеристики называются величинами.
С понятием величины вы уже встречались в базовом курсе информатики. Напомним, что со всякой величиной связны три основные свойства: имя, значение, тип.
Имя величины может быть полным (подчеркивающим ее смысл,а может быть символическим.Примером имени является «Давление газа»; а символическое имя для этой же величины — Р. В базах данных величинами являются поля записей. Для них, как правило, используются полные имена, например: «Фамилия», «Вес»» «Оценка» и т. п. В физике и других науках, использующих математический аппарат, применяются символические имена для обозначения величин. Чтобы не терялся смысл, для опреде- ленных величин используются стандартные имена. Например, время обозначают буквой t скорость — V, силу — F и так далее.
Если значение величины не изменяется, то она называется постоянной величиной или константой. Пример константы — число Пифагора п =З,14159... Величина, меняющая свое значение, называется переменной.
Например, в описании процесса падения тела переменными величинами являются высота (Н) и время падения (t). Третьим свойством величины является ее тип. С понятием типа величине вы также встречались в базах данных. Тип определяет мужество значений, которые может принимать величина. Основные етипы величин: числовой, символьный, логический. Поскольку в данном разделе мы будем говорить лишь о количественных характеристиках, то и рассматриваться будут только величины числового типа. А теперь вернемся к приведенным в начале параграфа примерам 1-3 и обозначим (поименуем) все переменные величины, зависимости между которыми нас будут интересовать. Кроме имен укажем размерности величин. Размерности определяют единицы, в которых представляются значения величин:
1) t (сек) — время падения; Н (ж) — высота падения. Зависимость будем представлять, пренебрегая учетом сопротивления воздуха. Ускорение свободного падения g (м/сек2) — константа.
2) Р (кг/м2) — давление газа; t°С — температура газа. Давление при нуле градусов Р0 считается константой для данного газа.
3) Загрязненность воздуха будем характеризовать концентрацией примесей (каких именно, будет сказано позже) — С(мг/куб. м).
Единица измерения — масса примесей, содержащихся в 1 кубическом метре воздуха, выраженная в миллиграммах. Уровень заболеваемости будем характеризовать числом хронических больных астмой, приходящимся на 1000 жителей данного города — Р (бол./тыс).
Если зависимое между величинами удается представить в математической форме, то мы имеем математическую модель.
Математическая модель - это совокупность количественных характеристик некоторого объекта (процесса) и связей между ними, представленных на языке математики.
Хорошо известны математические модели для первых двух примеров из перечисленных выше. Они отражают физические законы и представляются в виде формул:
Это примеры зависимостей, представленных в функции пильной форме. Первую зависимость называют корневой (время пропорционально квадратному корню от высоты), вторую — линейной (давление прямо пропорционально температуре). В более сложных задачах математические модели представляются в виде уравнений или систем уравнений. В этом случае для извлечения функциональной зависимости величин нужно уметь решать эти уравнения. В конце данной главы будет рассмотрен пример математической модели, которая выражается системой неравенств.
Рассмотрим примеры двух других способов представления зависимостей между величинами: табличного и графического.
Представьте себе, что мы решили проверить закон свободного падения тела экспериментальным путем. Эксперимент организовали следующим образом; бросаем стальной шарик с балкона 2-го этажа, 3-го этажа (и так далее) десятиэтажного дома, замеряя высоту начального положения шарика и время падения. По результатам эксперимента мы составили таблицу и нарисовали график.
Рис. 2.11. Табличное и графическое представление зависимости времени падения тела от высоты
Если каждую пару значений Н и t из данной таблицы подставить в приведенную выше формулу зависимости высоты от времени, то она превратится в равенство (с точностью до погрешности измерений). Значит, модель работает хорошо. (Однако если сбрасывать не стальной шарик, а большой легкий мяч, то данная модель будет меньше соответствовать формуле, а если надувной шарик, то совсем не будет соответствовать — как вы думаете, почему?)
В этом примере мы рассмотрели три способа отображения зависимости величин: функциональный (формула), табличный и графический. Однако математической моделью процесса падения тела на землю можно назвать только формулу. Почему? Потому что формула универсальна. Она позволяет определить время падения тела с любой высоты, а не только для того экспериментального набора значений Н, который отображен на рис. 2.11.
Кроме того, таблица и диаграмма (график) констатируют факты, а математическая модель позволяет прогнозировать, предсказывать путем расчетов .
Точно так же тремя способами можно отобразить зависимость давления от температуры. Оба примера связаны с известными физическими законами — законами природы. Знания физических законов позволяют производить точные расчеты, они лежит в основе современной техники.
Коротко о главном
Величина — некоторая количественная характеристика объекта.
Зависимости между величинами могут быть представлены в виде математической модели, в табличной и графической формах.
Зависимость, представленная в виде формулы, является математической моделью.
Вопросы и задания
1. а) Какие вам известны формы представления зависимостей между величинами?
б) Что такое математическая модель?
в) Может ли математическая модель включать в себя только константы?
2. Приведите пример известной вам функциональной зависимости (формулы) между характеристиками некоторой системы.
3. Обоснуйте преимущества и недостатки каждой из трех форм представления зависимостей.
Семакин И.Г., Хеннер Е.К., Информатика и ИКТ, 11
Отослано читателями из интернет-сайтов
Содержание урока
конспект урока
опорный каркас
презентация урока
акселеративные методы
интерактивные технологии
Практика
задачи и упражнения
самопроверка
практикумы, тренинги, кейсы, квесты
домашние задания
дискуссионные вопросы
риторические вопросы от учеников
Иллюстрации
аудио-, видеоклипы и мультимедиа
фотографии, картинки
графики, таблицы, схемы
юмор, анекдоты, приколы, комиксы
притчи, поговорки, кроссворды, цитаты
Дополнения
рефераты
статьи
фишки для любознательных
шпаргалки
учебники основные и дополнительные
словарь терминов
прочие
Совершенствование учебников и уроков
исправление ошибок в учебнике
обновление фрагмента в учебнике
элементы новаторства на уроке
замена устаревших знаний новыми
Только для учителей
идеальные уроки
календарный план на год
методические рекомендации
программы
обсуждения
Интегрированные уроки
Если у вас есть исправления или предложения к данному уроку, напишите нам.
Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум.
|