|
|
Строка 5: |
Строка 5: |
| <metakeywords>Физика, 10 класс, Электронная проводимость металлов</metakeywords> | | <metakeywords>Физика, 10 класс, Электронная проводимость металлов</metakeywords> |
| | | |
- | Начнем с металлических проводников. Вольт-амперная характеристика этих проводников нам известна, но пока ничего не говорилось о ее объяснении с точки зрения молекулярно-кинетической теории.<br> Носителями свободных зарядов в металлах являются электроны. Их концентрация велика - порядка 10<sup>28</sup> 1/м<sup>3</sup>. Эти электроны участвуют в беспорядочном тепловом движении. Под действием электрического поля они начинают перемещаться упорядоченно со средней скоростью порядка 10<sup>-4</sup> м/с.<br> '''Экспериментальное доказательство существования свободных электронов в металлах.''' Экспериментальное доказательство того, что проводимость металлов обусловлена движением свободных электронов, было дано в опытах Л.И.Мандельштама и Н. Д. Папалекси (1913), Б. Стюарта и Р. Толмена (1916). Схема этих опытов такова.<br> На катушку наматывают проволоку, концы которой припаивают к двум металлическим дискам, изолированным друг от друга (''рис.16.1''). К концам дисков при помощи скользящих контактов подключают гальванометр.<br>[[Image:a16.1.jpg|center]] Катушку приводят в быстрое вращение, а затем резко останавливают. После резкой остановки катушки свободные заряженные частицы некоторое время движутся относительно проводника по инерции и, следовательно, в катушке возникает электрический ток. Ток существует незначительное время, так как из-за сопротивления проводника заряженные частицы тормозятся и упорядоченное движение частиц, образующее ток, прекращается.<br> Направление тока в этом опыте говорит о том, что он создается движением отрицательно заряженных частиц. Переносимый при этом заряд пропорционален отношению заряда частиц, создающих ток, к их массе, т. е. ''|q|/m''. Поэтому, измеряя заряд, проходящий через гальванометр за время существования тока в цепи, удалось определить это отношение. Оно оказалось равным 1,8•10<sup>11</sup> Кл/кг. Эта величина совпадала с отношением заряда электрона к его массе ''е/m'', найденным ранее из других опытов.<br> '''Движение электронов в металле.''' Электроны под влиянием силы, действующей на них со стороны электрического поля, приобретают определенную скорость упорядоченного движения. Эта скорость не увеличивается в дальнейшем со временем, так как, сталкиваясь с ионами кристаллической решетки, электроны теряют направленное движение, а затем опять под действием электрического поля начинают двигаться направленно. В результате средняя скорость упорядоченного движения электронов оказывается пропорциональной напряженности электрического поля в проводнике ''v ~ E'' и, следовательно, разности потенциалов на концах проводника, так как [[Image:a110-4.jpg]], где ''l'' - длина проводника.<br> Сила тока в проводнике пропорциональна скорости упорядоченного движения частиц (см. формулу (15.2)). Поэтому можем сказать, что сила тока пропорциональна разности потенциалов на концах проводника: ''I ''~'' U''. В этом состоит ''качественное объяснение закона Ома'' на основе электронной теории проводимости металлов.<br> Построить удовлетворительную количественную теорию движения электронов в металле на основе законов классической механики невозможно. Дело в том, что условия движения электронов в металле таковы, что классическая механика Ньютона неприменима для описания этого движения.<br> Наиболее наглядно это видно из следующего примера. Если экспериментально определить среднюю кинетическую энергию теплового движения электронов в металле при комнатной температуре и найти соответствующую этой энергии температуру, то получим температуру порядка 10<sup>5</sup>-10<sup>6</sup> К. Такая температура существует внутри звезд. Движение электронов в металле подчиняется законам квантовой механики.<br> Экспериментально доказано, что носителями свободных зарядов в металлах являются электроны. Под действием электрического поля электроны движутся с постоянной средней скоростью, испытывая тормозящее влияние со стороны кристаллической решетки. Скорость упорядоченного движения электронов прямо пропорциональна напряженности поля в проводнике.<br><br><br> ???<br> 1. Катушка (см. рис. 16.1) вращалась по часовой стрелке, а затем была резко заторможена. Каково направление электрического тока в катушке в момент торможения?<br> 2. Как скорость упорядоченного движения электронов в металлическом проводнике зависит от напряжения на концах проводника?<br> | + | Начнем с металлических проводников. Вольт-амперная характеристика этих проводников нам известна, но пока ничего не говорилось о ее объяснении с точки зрения молекулярно-кинетической теории.<br> Носителями свободных зарядов в металлах являются электроны. Их концентрация велика - порядка 10<sup>28</sup> 1/м<sup>3</sup>. Эти электроны участвуют в беспорядочном тепловом движении. Под действием электрического поля они начинают перемещаться упорядоченно со средней скоростью порядка 10<sup>-4</sup> м/с.<br> '''Экспериментальное доказательство существования свободных электронов в металлах.''' Экспериментальное доказательство того, что проводимость металлов обусловлена движением свободных электронов, было дано в опытах Л.И.Мандельштама и Н. Д. Папалекси (1913), Б. Стюарта и Р. Толмена (1916). Схема этих опытов такова.<br> На катушку наматывают проволоку, концы которой припаивают к двум металлическим дискам, изолированным друг от друга (''рис.16.1''). К концам дисков при помощи скользящих контактов подключают гальванометр.<br>[[Image:A16.1.jpg|center|181x309px]] Катушку приводят в быстрое вращение, а затем резко останавливают. После резкой остановки катушки свободные заряженные частицы некоторое время движутся относительно проводника по инерции и, следовательно, в катушке возникает электрический ток. Ток существует незначительное время, так как из-за сопротивления проводника заряженные частицы тормозятся и упорядоченное движение частиц, образующее ток, прекращается.<br> Направление тока в этом опыте говорит о том, что он создается движением отрицательно заряженных частиц. Переносимый при этом заряд пропорционален отношению заряда частиц, создающих ток, к их массе, т. е. ''|q|/m''. Поэтому, измеряя заряд, проходящий через гальванометр за время существования тока в цепи, удалось определить это отношение. Оно оказалось равным 1,8•10<sup>11</sup> Кл/кг. Эта величина совпадала с отношением заряда электрона к его массе ''е/m'', найденным ранее из других опытов.<br> '''Движение электронов в металле.''' Электроны под влиянием силы, действующей на них со стороны электрического поля, приобретают определенную скорость упорядоченного движения. Эта скорость не увеличивается в дальнейшем со временем, так как, сталкиваясь с ионами кристаллической решетки, электроны теряют направленное движение, а затем опять под действием электрического поля начинают двигаться направленно. В результате средняя скорость упорядоченного движения электронов оказывается пропорциональной напряженности электрического поля в проводнике ''v ~ E'' и, следовательно, разности потенциалов на концах проводника, так как [[Image:A110-4.jpg|49x30px]], где ''l'' - длина проводника.<br> Сила тока в проводнике пропорциональна скорости упорядоченного движения частиц (см. формулу (15.2)). Поэтому можем сказать, что сила тока пропорциональна разности потенциалов на концах проводника: ''I ''~''U''. В этом состоит ''качественное объяснение закона Ома'' на основе электронной теории проводимости металлов.<br> Построить удовлетворительную количественную теорию движения электронов в металле на основе законов классической механики невозможно. Дело в том, что условия движения электронов в металле таковы, что классическая механика Ньютона неприменима для описания этого движения.<br> Наиболее наглядно это видно из следующего примера. Если экспериментально определить среднюю кинетическую энергию теплового движения электронов в металле при комнатной температуре и найти соответствующую этой энергии температуру, то получим температуру порядка 10<sup>5</sup>-10<sup>6</sup> К. Такая температура существует внутри звезд. Движение электронов в металле подчиняется законам квантовой механики.<br> Экспериментально доказано, что носителями свободных зарядов в металлах являются электроны. Под действием электрического поля электроны движутся с постоянной средней скоростью, испытывая тормозящее влияние со стороны кристаллической решетки. Скорость упорядоченного движения электронов прямо пропорциональна напряженности поля в проводнике.<br><br><br> ???<br> 1. Катушка (см. рис. 16.1) вращалась по часовой стрелке, а затем была резко заторможена. Каково направление электрического тока в катушке в момент торможения?<br> 2. Как скорость упорядоченного движения электронов в металлическом проводнике зависит от напряжения на концах проводника?<br> |
| | | |
- | | + | <br> ''Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский, Физика 10 класс'' |
- | ''Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский, Физика 10 класс'' | + | |
| | | |
| <br> <sub>Материалы [[Физика и астрономия|по физике]], задание и ответы по классам, планы конспектов уроков [[Физика 10 класс|по физике для 10 класса]]</sub> | | <br> <sub>Материалы [[Физика и астрономия|по физике]], задание и ответы по классам, планы конспектов уроков [[Физика 10 класс|по физике для 10 класса]]</sub> |
Версия 17:52, 28 августа 2010
Гипермаркет знаний>>Физика и астрономия>>Физика 10 класс>>Физика: Электронная проводимость металлов
Начнем с металлических проводников. Вольт-амперная характеристика этих проводников нам известна, но пока ничего не говорилось о ее объяснении с точки зрения молекулярно-кинетической теории. Носителями свободных зарядов в металлах являются электроны. Их концентрация велика - порядка 1028 1/м3. Эти электроны участвуют в беспорядочном тепловом движении. Под действием электрического поля они начинают перемещаться упорядоченно со средней скоростью порядка 10-4 м/с. Экспериментальное доказательство существования свободных электронов в металлах. Экспериментальное доказательство того, что проводимость металлов обусловлена движением свободных электронов, было дано в опытах Л.И.Мандельштама и Н. Д. Папалекси (1913), Б. Стюарта и Р. Толмена (1916). Схема этих опытов такова. На катушку наматывают проволоку, концы которой припаивают к двум металлическим дискам, изолированным друг от друга (рис.16.1). К концам дисков при помощи скользящих контактов подключают гальванометр. Катушку приводят в быстрое вращение, а затем резко останавливают. После резкой остановки катушки свободные заряженные частицы некоторое время движутся относительно проводника по инерции и, следовательно, в катушке возникает электрический ток. Ток существует незначительное время, так как из-за сопротивления проводника заряженные частицы тормозятся и упорядоченное движение частиц, образующее ток, прекращается. Направление тока в этом опыте говорит о том, что он создается движением отрицательно заряженных частиц. Переносимый при этом заряд пропорционален отношению заряда частиц, создающих ток, к их массе, т. е. |q|/m. Поэтому, измеряя заряд, проходящий через гальванометр за время существования тока в цепи, удалось определить это отношение. Оно оказалось равным 1,8•1011 Кл/кг. Эта величина совпадала с отношением заряда электрона к его массе е/m, найденным ранее из других опытов. Движение электронов в металле. Электроны под влиянием силы, действующей на них со стороны электрического поля, приобретают определенную скорость упорядоченного движения. Эта скорость не увеличивается в дальнейшем со временем, так как, сталкиваясь с ионами кристаллической решетки, электроны теряют направленное движение, а затем опять под действием электрического поля начинают двигаться направленно. В результате средняя скорость упорядоченного движения электронов оказывается пропорциональной напряженности электрического поля в проводнике v ~ E и, следовательно, разности потенциалов на концах проводника, так как , где l - длина проводника. Сила тока в проводнике пропорциональна скорости упорядоченного движения частиц (см. формулу (15.2)). Поэтому можем сказать, что сила тока пропорциональна разности потенциалов на концах проводника: I ~U. В этом состоит качественное объяснение закона Ома на основе электронной теории проводимости металлов. Построить удовлетворительную количественную теорию движения электронов в металле на основе законов классической механики невозможно. Дело в том, что условия движения электронов в металле таковы, что классическая механика Ньютона неприменима для описания этого движения. Наиболее наглядно это видно из следующего примера. Если экспериментально определить среднюю кинетическую энергию теплового движения электронов в металле при комнатной температуре и найти соответствующую этой энергии температуру, то получим температуру порядка 105-106 К. Такая температура существует внутри звезд. Движение электронов в металле подчиняется законам квантовой механики. Экспериментально доказано, что носителями свободных зарядов в металлах являются электроны. Под действием электрического поля электроны движутся с постоянной средней скоростью, испытывая тормозящее влияние со стороны кристаллической решетки. Скорость упорядоченного движения электронов прямо пропорциональна напряженности поля в проводнике.
??? 1. Катушка (см. рис. 16.1) вращалась по часовой стрелке, а затем была резко заторможена. Каково направление электрического тока в катушке в момент торможения? 2. Как скорость упорядоченного движения электронов в металлическом проводнике зависит от напряжения на концах проводника?
Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский, Физика 10 класс
Материалы по физике, задание и ответы по классам, планы конспектов уроков по физике для 10 класса
Содержание урока
конспект урока
опорный каркас
презентация урока
акселеративные методы
интерактивные технологии
Практика
задачи и упражнения
самопроверка
практикумы, тренинги, кейсы, квесты
домашние задания
дискуссионные вопросы
риторические вопросы от учеников
Иллюстрации
аудио-, видеоклипы и мультимедиа
фотографии, картинки
графики, таблицы, схемы
юмор, анекдоты, приколы, комиксы
притчи, поговорки, кроссворды, цитаты
Дополнения
рефераты
статьи
фишки для любознательных
шпаргалки
учебники основные и дополнительные
словарь терминов
прочие
Совершенствование учебников и уроков
исправление ошибок в учебнике
обновление фрагмента в учебнике
элементы новаторства на уроке
замена устаревших знаний новыми
Только для учителей
идеальные уроки
календарный план на год
методические рекомендации
программы
обсуждения
Интегрированные уроки
Если у вас есть исправления или предложения к данному уроку, напишите нам.
Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум.
|