|
|
Строка 5: |
Строка 5: |
| <metakeywords>Физика, 10 класс, Сверхпроводимость</metakeywords> | | <metakeywords>Физика, 10 класс, Сверхпроводимость</metakeywords> |
| | | |
- | Сопротивление проводников зависит от температуры. Сопротивление металлов уменьшается с уменьшением температуры. Что произойдет при стремлении температуры к абсолютному нулю?<br> В 1911 г. голландский физик X. Камерлинг-Оннес открыл замечательное явление - ''сверхпроводимость''. Он обнаружил, что при охлаждении ртути в жидком гелии ее сопротивление сначала меняется постепенно, а затем при температуре 4,1 К очень резко падает до нуля (''рис.16.3''). Температура, при которой вещество переходит в сверхпроводящее состояние, называется критической температурой. Это явление было названо сверхпроводимостью. Позже было открыто много других сверхпроводников. <br>[[Image:A16.3.jpg|center|187x172px]] Сверхпроводимость многих металлов и сплавов наблюдается при очень низких температурах - начиная примерно с 25 К. В справочных таблицах приводятся температуры перехода в сверхпроводящее состояние некоторых веществ.<br> Если в кольцевом проводнике, находящемся в сверхпроводящем состоянии, создать ток, а затем устранить источник тока, то сила этого тока не меняется сколь угодно долго. В обычном же (несверхпроводящем) проводнике электрический ток в этом случае прекращается.<br> Сверхпроводники находят широкое применение. Так, сооружают мощные электромагниты со сверхпроводящей обмоткой, которые создают магнитное поле на протяжении длительных интервалов времени без затрат энергии. Ведь ''выделения тепла в сверхпроводящей обмотке не происходит.''<br> Однако получить сколь угодно сильное магнитное поле с помощью сверхпроводящего магнита нельзя. Очень сильное магнитное поле разрушает сверхпроводящее состояние. Такое поле может быть создано и током в самом сверхпроводнике. Поэтому для каждого проводника в сверхпроводящем состоянии существует критическое значение силы тока, превзойти которое, не нарушая сверхпроводящего состояния, нельзя.<br> Сверхпроводящие магниты используются в ускорителях элементарных частиц, магнитогидродинамических генераторах, преобразующих механическую энергию струи раскаленного ионизованного газа, движущегося в магнитном поле, в электрическую энергию.<br> Если бы удалось создать сверхпроводящие материалы при температурах, близких к комнатным, то была бы решена важнейшая техническая проблема - ''передача энергии по проводам без потерь''. В настоящее время физики работают над ее решением.<br> Объяснение сверхпроводимости возможно только на основе квантовой теории. Оно было дано лишь в 1957 г. американскими учеными Дж. Бардиным, Л.Купером, Дж. Шриффером и советским ученым, академиком Н. Н. Боголюбовым.<br> Физический механизм сверхпроводимости довольно сложен. Очень упрощенно его можно объяснить так: электроны объединяются в правильную шеренгу и движутся не сталкиваясь с кристаллической решеткой, состоящей из ионов. Это движение существенно отличается от обычного теплового движения, при котором свободный электрон движется хаотично.<br> В 1986 г. была открыта высокотемпературная сверхпроводимость. Получены сложные оксидные соединения лантана, бария и других элементов (керамики) с температурой перехода в сверхпроводящее состояние около 100 К. Это выше температуры кипения жидкого азота при атмосферном давлении (77 К).<br> Высокотемпературная сверхпроводимость в недалеком будущем приведет наверняка к новой технической революции во всей электротехнике, радиотехнике, конструировании ЭВМ. Сейчас прогресс в этой области тормозится необходимостью охлаждения проводников до температур кипения дорогого газа - гелия.<br> Надо надеяться, что удастся создать сверхпроводники и при комнатной температуре. Генераторы и электродвигатели станут исключительно компактными (уменьшатся в несколько раз) и экономичными. Электроэнергию можно будет передавать на любые расстояния без потерь и аккумулировать в простых устройствах.<br> Многие металлы и сплавы при температурах ниже 25 К полностью теряют сопротивление - становятся сверхпроводниками.<br> Недавно была открыта высокотемпературная сверхпроводимость.<br><br><br> ???<br> 1. Каковы главные технические трудности использования сверхпроводников на практике?<br> 2. Как убедиться в том. что в кольцевом сверхпроводнике действительно устанавливается неизменный ток?<br> | + | Сопротивление проводников зависит от [[Определение_температуры|температуры]]. Сопротивление металлов уменьшается с уменьшением температуры. Что произойдет при стремлении температуры к абсолютному нулю?<br> В 1911 г. голландский физик X. Камерлинг-Оннес открыл замечательное явление - ''сверхпроводимость''. Он обнаружил, что при охлаждении ртути в жидком гелии ее сопротивление сначала меняется постепенно, а затем при температуре 4,1 К очень резко падает до нуля (''рис.16.3''). Температура, при которой вещество переходит в сверхпроводящее состояние, называется критической температурой. Это явление было названо сверхпроводимостью. Позже было открыто много других сверхпроводников. <br>[[Image:A16.3.jpg|center|187x172px|Сверхпроводимость]] Сверхпроводимость многих металлов и сплавов наблюдается при очень низких температурах - начиная примерно с 25 К. В справочных таблицах приводятся [[Определение_температуры|температуры]] перехода в сверхпроводящее состояние некоторых веществ.<br> Если в кольцевом проводнике, находящемся в сверхпроводящем состоянии, создать ток, а затем устранить источник тока, то сила этого тока не меняется сколь угодно долго. В обычном же (несверхпроводящем) проводнике электрический ток в этом случае прекращается.<br> Сверхпроводники находят широкое применение. Так, сооружают мощные электромагниты со сверхпроводящей обмоткой, которые создают магнитное поле на протяжении длительных интервалов времени без затрат энергии. Ведь ''выделения тепла в сверхпроводящей обмотке не происходит.''<br> Однако получить сколь угодно сильное магнитное поле с помощью сверхпроводящего магнита нельзя. Очень сильное магнитное поле разрушает сверхпроводящее состояние. Такое поле может быть создано и током в самом сверхпроводнике. Поэтому для каждого проводника в сверхпроводящем состоянии существует критическое значение силы тока, превзойти которое, не нарушая сверхпроводящего состояния, нельзя.<br> Сверхпроводящие [[Постоянные_магниты|магниты]] используются в ускорителях элементарных частиц, магнитогидродинамических генераторах, преобразующих механическую энергию струи раскаленного ионизованного газа, движущегося в магнитном поле, в электрическую энергию.<br> Если бы удалось создать сверхпроводящие материалы при температурах, близких к комнатным, то была бы решена важнейшая техническая проблема - ''передача энергии по проводам без потерь''. В настоящее время физики работают над ее решением.<br> Объяснение сверхпроводимости возможно только на основе квантовой теории. Оно было дано лишь в 1957 г. американскими учеными Дж. Бардиным, Л.Купером, Дж. Шриффером и советским ученым, академиком Н. Н. Боголюбовым.<br> Физический механизм сверхпроводимости довольно сложен. Очень упрощенно его можно объяснить так: электроны объединяются в правильную шеренгу и движутся не сталкиваясь с кристаллической решеткой, состоящей из ионов. Это движение существенно отличается от обычного теплового движения, при котором свободный электрон движется хаотично.<br> В 1986 г. была открыта высокотемпературная сверхпроводимость. Получены сложные оксидные соединения лантана, бария и других элементов (керамики) с температурой перехода в сверхпроводящее состояние около 100 К. Это выше температуры кипения жидкого азота при [[Атмосфера_и_атмосферное_давление|атмосферном давлении]] (77 К).<br> Высокотемпературная сверхпроводимость в недалеком будущем приведет наверняка к новой технической революции во всей электротехнике, радиотехнике, конструировании ЭВМ. Сейчас прогресс в этой области тормозится необходимостью охлаждения проводников до температур кипения дорогого газа - гелия.<br> Надо надеяться, что удастся создать сверхпроводники и при комнатной температуре. Генераторы и электродвигатели станут исключительно компактными (уменьшатся в несколько раз) и экономичными. Электроэнергию можно будет передавать на любые расстояния без потерь и аккумулировать в простых устройствах.<br> Многие металлы и сплавы при температурах ниже 25 К полностью теряют сопротивление - становятся сверхпроводниками.<br> Недавно была открыта высокотемпературная сверхпроводимость.<br><br><br> ???<br> 1. Каковы главные технические трудности использования сверхпроводников на практике?<br> 2. Как убедиться в том. что в кольцевом сверхпроводнике действительно устанавливается неизменный ток?<br> |
| | | |
- | <br> ''Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский, Физика 10 класс'' | + | <br> ''Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский, [[Физика_10_класс|Физика 10 класс]]'' |
| | | |
| <br> <sub>Полный список тем [[Физика и астрономия|по физике]], календарный план [[Гипермаркет знаний - первый в мире!|по всем предметам согласно]] школьной программы, домашнее задание, курсы и задание [[Физика 10 класс|по физике для 10 класса]]</sub> | | <br> <sub>Полный список тем [[Физика и астрономия|по физике]], календарный план [[Гипермаркет знаний - первый в мире!|по всем предметам согласно]] школьной программы, домашнее задание, курсы и задание [[Физика 10 класс|по физике для 10 класса]]</sub> |
| | | |
| '''<u>Содержание урока</u>''' | | '''<u>Содержание урока</u>''' |
- | '''[[Image:1236084776 kr.jpg|10x10px]] конспект урока ''' | + | '''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] конспект урока ''' |
- | [[Image:1236084776 kr.jpg|10x10px]] опорный каркас | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] опорный каркас |
- | [[Image:1236084776 kr.jpg|10x10px]] презентация урока | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] презентация урока |
- | [[Image:1236084776 kr.jpg|10x10px]] акселеративные методы | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] акселеративные методы |
- | [[Image:1236084776 kr.jpg|10x10px]] интерактивные технологии | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] интерактивные технологии |
| | | |
| '''<u>Практика</u>''' | | '''<u>Практика</u>''' |
- | [[Image:1236084776 kr.jpg|10x10px]] задачи и упражнения | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] задачи и упражнения |
- | [[Image:1236084776 kr.jpg|10x10px]] самопроверка | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] самопроверка |
- | [[Image:1236084776 kr.jpg|10x10px]] практикумы, тренинги, кейсы, квесты | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] практикумы, тренинги, кейсы, квесты |
- | [[Image:1236084776 kr.jpg|10x10px]] домашние задания | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] домашние задания |
- | [[Image:1236084776 kr.jpg|10x10px]] дискуссионные вопросы | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] дискуссионные вопросы |
- | [[Image:1236084776 kr.jpg|10x10px]] риторические вопросы от учеников | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] риторические вопросы от учеников |
- |
| + | |
| '''<u>Иллюстрации</u>''' | | '''<u>Иллюстрации</u>''' |
- | '''[[Image:1236084776 kr.jpg|10x10px]] аудио-, видеоклипы и мультимедиа ''' | + | '''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] аудио-, видеоклипы и мультимедиа ''' |
- | [[Image:1236084776 kr.jpg|10x10px]] фотографии, картинки | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] фотографии, картинки |
- | [[Image:1236084776 kr.jpg|10x10px]] графики, таблицы, схемы | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] графики, таблицы, схемы |
- | [[Image:1236084776 kr.jpg|10x10px]] юмор, анекдоты, приколы, комиксы | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] юмор, анекдоты, приколы, комиксы |
- | [[Image:1236084776 kr.jpg|10x10px]] притчи, поговорки, кроссворды, цитаты | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] притчи, поговорки, кроссворды, цитаты |
| | | |
| '''<u>Дополнения</u>''' | | '''<u>Дополнения</u>''' |
- | '''[[Image:1236084776 kr.jpg|10x10px]] рефераты''' | + | '''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] рефераты''' |
- | [[Image:1236084776 kr.jpg|10x10px]] статьи | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] статьи |
- | [[Image:1236084776 kr.jpg|10x10px]] фишки для любознательных | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] фишки для любознательных |
- | [[Image:1236084776 kr.jpg|10x10px]] шпаргалки | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] шпаргалки |
- | [[Image:1236084776 kr.jpg|10x10px]] учебники основные и дополнительные | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] учебники основные и дополнительные |
- | [[Image:1236084776 kr.jpg|10x10px]] словарь терминов | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] словарь терминов |
- | [[Image:1236084776 kr.jpg|10x10px]] прочие | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] прочие |
| | | |
| <u>Совершенствование учебников и уроков | | <u>Совершенствование учебников и уроков |
- | </u>'''[[Image:1236084776 kr.jpg|10x10px]] исправление ошибок в учебнике''' | + | </u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] исправление ошибок в учебнике''' |
- | [[Image:1236084776 kr.jpg|10x10px]] обновление фрагмента в учебнике | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] обновление фрагмента в учебнике |
- | [[Image:1236084776 kr.jpg|10x10px]] элементы новаторства на уроке | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] элементы новаторства на уроке |
- | [[Image:1236084776 kr.jpg|10x10px]] замена устаревших знаний новыми | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] замена устаревших знаний новыми |
- |
| + | |
| '''<u>Только для учителей</u>''' | | '''<u>Только для учителей</u>''' |
- | '''[[Image:1236084776 kr.jpg|10x10px]] идеальные уроки ''' | + | '''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] идеальные уроки ''' |
- | [[Image:1236084776 kr.jpg|10x10px]] календарный план на год | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] календарный план на год |
- | [[Image:1236084776 kr.jpg|10x10px]] методические рекомендации | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] методические рекомендации |
- | [[Image:1236084776 kr.jpg|10x10px]] программы | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] программы |
- | [[Image:1236084776 kr.jpg|10x10px]] обсуждения | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] обсуждения |
| | | |
| | | |
Текущая версия на 14:46, 5 июля 2012
Гипермаркет знаний>>Физика и астрономия>>Физика 10 класс>>Физика: Сверхпроводимость
Сопротивление проводников зависит от температуры. Сопротивление металлов уменьшается с уменьшением температуры. Что произойдет при стремлении температуры к абсолютному нулю? В 1911 г. голландский физик X. Камерлинг-Оннес открыл замечательное явление - сверхпроводимость. Он обнаружил, что при охлаждении ртути в жидком гелии ее сопротивление сначала меняется постепенно, а затем при температуре 4,1 К очень резко падает до нуля (рис.16.3). Температура, при которой вещество переходит в сверхпроводящее состояние, называется критической температурой. Это явление было названо сверхпроводимостью. Позже было открыто много других сверхпроводников. Сверхпроводимость многих металлов и сплавов наблюдается при очень низких температурах - начиная примерно с 25 К. В справочных таблицах приводятся температуры перехода в сверхпроводящее состояние некоторых веществ. Если в кольцевом проводнике, находящемся в сверхпроводящем состоянии, создать ток, а затем устранить источник тока, то сила этого тока не меняется сколь угодно долго. В обычном же (несверхпроводящем) проводнике электрический ток в этом случае прекращается. Сверхпроводники находят широкое применение. Так, сооружают мощные электромагниты со сверхпроводящей обмоткой, которые создают магнитное поле на протяжении длительных интервалов времени без затрат энергии. Ведь выделения тепла в сверхпроводящей обмотке не происходит. Однако получить сколь угодно сильное магнитное поле с помощью сверхпроводящего магнита нельзя. Очень сильное магнитное поле разрушает сверхпроводящее состояние. Такое поле может быть создано и током в самом сверхпроводнике. Поэтому для каждого проводника в сверхпроводящем состоянии существует критическое значение силы тока, превзойти которое, не нарушая сверхпроводящего состояния, нельзя. Сверхпроводящие магниты используются в ускорителях элементарных частиц, магнитогидродинамических генераторах, преобразующих механическую энергию струи раскаленного ионизованного газа, движущегося в магнитном поле, в электрическую энергию. Если бы удалось создать сверхпроводящие материалы при температурах, близких к комнатным, то была бы решена важнейшая техническая проблема - передача энергии по проводам без потерь. В настоящее время физики работают над ее решением. Объяснение сверхпроводимости возможно только на основе квантовой теории. Оно было дано лишь в 1957 г. американскими учеными Дж. Бардиным, Л.Купером, Дж. Шриффером и советским ученым, академиком Н. Н. Боголюбовым. Физический механизм сверхпроводимости довольно сложен. Очень упрощенно его можно объяснить так: электроны объединяются в правильную шеренгу и движутся не сталкиваясь с кристаллической решеткой, состоящей из ионов. Это движение существенно отличается от обычного теплового движения, при котором свободный электрон движется хаотично. В 1986 г. была открыта высокотемпературная сверхпроводимость. Получены сложные оксидные соединения лантана, бария и других элементов (керамики) с температурой перехода в сверхпроводящее состояние около 100 К. Это выше температуры кипения жидкого азота при атмосферном давлении (77 К). Высокотемпературная сверхпроводимость в недалеком будущем приведет наверняка к новой технической революции во всей электротехнике, радиотехнике, конструировании ЭВМ. Сейчас прогресс в этой области тормозится необходимостью охлаждения проводников до температур кипения дорогого газа - гелия. Надо надеяться, что удастся создать сверхпроводники и при комнатной температуре. Генераторы и электродвигатели станут исключительно компактными (уменьшатся в несколько раз) и экономичными. Электроэнергию можно будет передавать на любые расстояния без потерь и аккумулировать в простых устройствах. Многие металлы и сплавы при температурах ниже 25 К полностью теряют сопротивление - становятся сверхпроводниками. Недавно была открыта высокотемпературная сверхпроводимость.
??? 1. Каковы главные технические трудности использования сверхпроводников на практике? 2. Как убедиться в том. что в кольцевом сверхпроводнике действительно устанавливается неизменный ток?
Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский, Физика 10 класс
Полный список тем по физике, календарный план по всем предметам согласно школьной программы, домашнее задание, курсы и задание по физике для 10 класса
Содержание урока
конспект урока
опорный каркас
презентация урока
акселеративные методы
интерактивные технологии
Практика
задачи и упражнения
самопроверка
практикумы, тренинги, кейсы, квесты
домашние задания
дискуссионные вопросы
риторические вопросы от учеников
Иллюстрации
аудио-, видеоклипы и мультимедиа
фотографии, картинки
графики, таблицы, схемы
юмор, анекдоты, приколы, комиксы
притчи, поговорки, кроссворды, цитаты
Дополнения
рефераты
статьи
фишки для любознательных
шпаргалки
учебники основные и дополнительные
словарь терминов
прочие
Совершенствование учебников и уроков
исправление ошибок в учебнике
обновление фрагмента в учебнике
элементы новаторства на уроке
замена устаревших знаний новыми
Только для учителей
идеальные уроки
календарный план на год
методические рекомендации
программы
обсуждения
Интегрированные уроки
Если у вас есть исправления или предложения к данному уроку, напишите нам.
Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум.
|