|
|
Строка 1: |
Строка 1: |
- | '''[[Гипермаркет знаний - первый в мире!|Гипермаркет знаний]]>>[[Информатика|Информатика]]>>[[Информатика 11 класс|Информатика 11 класс]]>>Информатика: Метод наименьших квадратов ''' ''<br><metakeywords>Метод наименьших квадратов</metakeywords>'' | + | <metakeywords>Информатика, класc, урок, на тему, 11 класc, Метод наименьших квадратов</metakeywords> |
| + | |
| + | '''[[Гипермаркет знаний - первый в мире!|Гипермаркет знаний]]>>[[Информатика|Информатика]]>>[[Информатика 11 класс|Информатика 11 класс]]>>Информатика: Метод наименьших квадратов ''' |
| | | |
| <br> | | <br> |
| | | |
- | ''' Метод наименьших квадратов ''' ''<br>'' | + | '''Метод наименьших квадратов ''' ''<br>'' |
| | | |
- | <br> '' Получение регрессионной модели происходит в два этапа:<br> 1) подбор вида функции;'' | + | <br> Получение регрессионной модели происходит в два этапа: |
| | | |
- | '' 2) вычисление параметров функции.''
| + | 1) подбор вида функции; |
| | | |
- | '' Первая задача не имеет строгого решения. Здесь может помочь опыт и интуиция исследователя, а возможен и «слепой» перебор из конечного числа функций и выбор лучшей из них.''
| + | 2) вычисление параметров функции. |
| | | |
- | '' Чаще всего выбор производится среди следующих функций:''
| + | Первая задача не имеет строгого решения. Здесь может помочь опыт и интуиция исследователя, а возможен и «слепой» перебор из конечного числа функций и выбор лучшей из них. |
| | | |
- | '' у = ах + b — линейная функция; ''
| + | Чаще всего выбор производится среди следующих функций: |
| | | |
- | '' у = ах<sup>2</sup> + Ьх + с — квадратичная функция;''
| + | у = ах + b — линейная функция; |
| | | |
- | '' у = аln(х) + Ь — логарифмическая функция;''
| + | у = ах<sup>2</sup> + Ьх + с — квадратичная функция; |
| | | |
- | '' у = ае<sup>bx</sup><sup></sup> — экспоненциальная функция;''
| + | у = аln(х) + Ь — логарифмическая функция; |
| | | |
- | '' у = ах<sup>b</sup> ~ степенная функция.''
| + | у = ае<sup>bx</sup> — экспоненциальная функция; |
| | | |
- | '' Квадратичная функция называется в математике полиномом второй степени. Иногда используются полиномы и более высоких степеней, например, полином третьей степени имеет вид: у = ах<sup>3</sup> + bx<sup>2</sup> + сх + d.''
| + | у = ах<sup>b</sup> ~ степенная функция. |
| | | |
- | '' Во всех этих формулах х — аргумент, у — значение функции, а, b, с, d — параметры функций. Ln(x) — натуральный логарифм, е - константа, основание натурального логарифма.''
| + | Квадратичная функция называется в математике полиномом второй степени. Иногда используются полиномы и более высоких степеней, например, полином третьей степени имеет вид: у = ах<sup>3</sup> + bx<sup>2</sup> + сх + d. |
| | | |
- | '' Если вы выбрали (сознательно или наугад) одну из предлагаемых функций, то следующим шагом нужно подобрать параметры (а, b, с и пр.) так, чтобы функция располагалась как можно ближе к экспериментальным точкам. Что значит ♦ «располагалась как можно ближе»? Ответить на этот вопрос — значит предложить метод вычисления параметров. ''
| + | Во всех этих формулах х — аргумент, у — значение функции, а, b, с, d — параметры функций. Ln(x) — натуральный логарифм, е - константа, основание натурального логарифма. |
| | | |
- | '' Такой метод был предложен в XVIII веке немецким математиком К. Гауссом. Он называется методом наименьших квадратов (МНК). Суть его заключается в следующем: искомая функция должна быть построена так, чтобы сумма квадратов отклонений у- координат всех экспериментальных точек от у-координат графика функции была бы минимальной.''
| + | Если вы выбрали (сознательно или наугад) одну из предлагаемых функций, то следующим шагом нужно подобрать параметры (а, b, с и пр.) так, чтобы функция располагалась как можно ближе к экспериментальным точкам. Что значит «располагалась как можно ближе»? Ответить на этот вопрос — значит предложить метод вычисления параметров. |
| | | |
- | '' Мы не будем здесь производить подробное математическое описание метода наименьших квадратов. Достаточно того, что вы теперь знаете о существовании такого метода. Он очень широко используется в статистической обработке данных и встроен во многие математические пакеты программ. Важно понимать следующее: методом наименьших квадратов по данному набору экспериментальных точек можно построить любую (в том числе и из рассмотренных выше) функцию. А вот будет ли она нас удовлетворять, это уже другой вопрос — вопрос критерия соответствия. На рис. 2.14 изображены три функции, построенные методом наименьших квадратов по данным, представленным в предыдущей теме.<br> <br><br>[[Image:Инф96.jpg]]<br><br> Рис. 2.14. Использование метода наименьших квадратов<br><br> Данные рисунки получены с помощью MS Excel. График регрессионной модели называется трендом. Английское слово trend можно перевести как общее направление, или тенденция.''<br>
| + | Такой метод был предложен в XVIII веке немецким математиком К. Гауссом. Он называется методом наименьших квадратов (МНК). Суть его заключается в следующем: искомая функция должна быть построена так, чтобы сумма квадратов отклонений у- координат всех экспериментальных точек от у-координат графика функции была бы минимальной. |
| | | |
- | '' Уже с первого взгляда хочется отбраковать вариант линейного тренда. График линейной функции — это прямая. Полученная по МНК прямая отражает факт роста заболеваемости от концентрации угарного газа, но по этому графику трудно что-либо сказать о характере этого роста. А вот квадратичный и экспоненциальный тренды ведут себя очень правдоподобно. Теперь пора обратить внимание на надписи, присутствующие на графиках. Во-первых, это записанные в явном виде искомые функции — регрессионные модели:''<br> | + | Мы не будем здесь производить подробное математическое описание метода наименьших квадратов. Достаточно того, что вы теперь знаете о существовании такого метода. Он очень широко используется в статистической обработке данных и встроен во многие математические пакеты программ. Важно понимать следующее: методом наименьших квадратов по данному набору экспериментальных точек можно построить любую (в том числе и из рассмотренных выше) функцию. А вот будет ли она нас удовлетворять, это уже другой вопрос — вопрос критерия соответствия. На рис. 2.14 изображены три функции, построенные методом наименьших квадратов по данным, представленным в предыдущей теме.''<br><br>[[Image:Инф96.jpg|550px|Использование метода наименьших квадратов]]<br><br> Рис. 2.14. Использование метода наименьших квадратов<br><br>''Данные рисунки получены с помощью MS Excel. График регрессионной модели называется трендом. Английское слово trend можно перевести как общее направление, или тенденция.<br> |
| | | |
- | '' линейная функция: у =46,361х - 99,881;''<br>
| + | Уже с первого взгляда хочется отбраковать вариант линейного тренда. График линейной функции — это прямая. Полученная по МНК прямая отражает факт роста заболеваемости от концентрации угарного газа, но по этому графику трудно что-либо сказать о характере этого роста. А вот квадратичный и экспоненциальный тренды ведут себя очень правдоподобно. Теперь пора обратить внимание на надписи, присутствующие на графиках. Во-первых, это записанные в явном виде искомые функции — регрессионные модели:<br> |
| | | |
- | '' экспоненциальная функция: у = 3,4302 е<sup>0.7555x</sup>;''<br>
| + | линейная функция: у =46,361х - 99,881;<br> |
| | | |
- | '' квадратичная функция: у = 21,845х<sup>2</sup> - 106,97x +150,21.''
| + | экспоненциальная функция: у = 3,4302 е<sup>0.7555x</sup>;<br> |
| | | |
- | '' На графиках присутствует еще одна величина, полученная в результате построения трендов. Она обозначена как R<sup>2</sup>. В статистике эта величина называется коэффициентом детерминированности. Именно она определяет, насколько удачной является полученная регрессионная модель. Коэффициент детерминированности всегда заключен в диапазоне от 0 до 1. Если он равен 1, то функция точно проходит через табличные значения, если О, то выбранный вид регрессионной модели предельно неудачен. Чем R<sup>2</sup> ближе к 1, тем удачнее регрессионная модель.''
| + | квадратичная функция: у = 21,845х<sup>2</sup> - 106,97x +150,21. |
| | | |
- | '' Из трех выбранных моделей значение R<sup>2</sup> наименьшее у линейной. Значит, она самая неудачная (нам и так это было понятно). Значения же R<sup>2</sup> у двух других моделей достаточно близки (разница меньше одной 0,01). Если определить погрешность решения данной задачи как 0,01, по критерию R<sup>2</sup> эти модели нельзя разделить. Они одинаково удачны. Здесь могут вступить в силу качественные соображения. ''
| + | На графиках присутствует еще одна величина, полученная в результате построения трендов. Она обозначена как R<sup>2</sup>. В статистике эта величина называется коэффициентом детерминированности. Именно она определяет, насколько удачной является полученная регрессионная модель. Коэффициент детерминированности всегда заключен в диапазоне от 0 до 1. Если он равен 1, то функция точно проходит через табличные значения, если О, то выбранный вид регрессионной модели предельно неудачен. Чем R<sup>2</sup> ближе к 1, тем удачнее регрессионная модель. |
| | | |
- | '' Например, если считать, что наиболее существенно влияние концентрации угарного газа проявляется при больших величинах, то глядя на графики, предпочтение следует отдать квадратичной модели. Она лучше отражает резкий рост заболеваемости при больших концентрациях примеси.''
| + | Из трех выбранных моделей значение R<sup>2</sup> наименьшее у линейной. Значит, она самая неудачная (нам и так это было понятно). Значения же R<sup>2</sup> у двух других моделей достаточно близки (разница меньше одной 0,01). Если определить погрешность решения данной задачи как 0,01, по критерию R<sup>2</sup> эти модели нельзя разделить. Они одинаково удачны. Здесь могут вступить в силу качественные соображения. |
| | | |
- | '' Интересный факт: опыт показывает, что если человеку предложить на данной точечной диаграмме провести на глаз прямую так, чтобы точки были равномерно разбросаны вокруг нее, то он проведет линию, достаточно близкую к той, что дает МНК.<br><br> '''Коротко о главном'''<br><br> Метод наименьших квадратов используется для вычисления параметров регрессионной модели. Этот метод содержится в математическом арсенале электронных таблиц (в том числе и в MS Excel).''
| + | Например, если считать, что наиболее существенно влияние концентрации угарного газа проявляется при больших величинах, то глядя на графики, предпочтение следует отдать квадратичной модели. Она лучше отражает резкий рост заболеваемости при больших концентрациях примеси. |
| | | |
- | '' Выбор типа регрессионной модели пользователь производит сам, а МНК позволяет построить функцию такого типа, наиболее близкую к экспериментальным данным.''
| + | Интересный факт: опыт показывает, что если человеку предложить на данной точечной диаграмме провести на глаз прямую так, чтобы точки были равномерно разбросаны вокруг нее, то он проведет линию, достаточно близкую к той, что дает МНК. |
| | | |
- | '' Характеристикой построенной модели является параметр R<sup>2</sup> — коэффициент детерминированности. Чем его значение ближе к 1, тем модель лучше.'' | + | <br>'''Коротко о главном'''<br><br>Метод наименьших квадратов используется для вычисления параметров регрессионной модели. Этот метод содержится в математическом арсенале электронных таблиц (в том числе и в MS Excel). |
| | | |
- | '' Может оказаться, что несколько моделей имеют близкий параметр R<sup>2</sup>. В этом случае пользователь выбирает из них наиболее подходящую, исходя из эмпирических соображении.''
| + | Выбор типа регрессионной модели пользователь производит сам, а МНК позволяет построить функцию такого типа, наиболее близкую к экспериментальным данным. |
| | | |
- | ''<br> '''Вопросы и задания'''<br><br><br> 1. а) Для чего используется метод наименьших квадратов?''
| + | Характеристикой построенной модели является параметр R<sup>2</sup> — коэффициент детерминированности. Чем его значение ближе к 1, тем модель лучше. |
| | | |
- | '' б) Что такое тренд?''
| + | Может оказаться, что несколько моделей имеют близкий параметр R<sup>2</sup>. В этом случае пользователь выбирает из них наиболее подходящую, исходя из эмпирических соображении. |
| | | |
- | '' в) Как располагается линия тренда, построенная по МНК, относительно экспериментальных точек?'' | + | ''<br>'''''Вопросы и задания'''''<br><br>1. а) Для чего используется метод наименьших квадратов?'' |
| | | |
- | '' г) Может ли тренд, построенный по МНК, пройти выше всех экспериментальных точек?'' | + | ''б) Что такое тренд?'' |
| | | |
- | '' 2. а) В чем смысл параметра R<sup>2</sup>? Какие значения он принимает?'' | + | ''в) Как располагается линия тренда, построенная по МНК, относительно экспериментальных точек?'' |
| | | |
- | '' б) Какое значение примет параметр R<sup>2</sup> если тренд точно проходит через экспериментальные точки?'' | + | ''г) Может ли тренд, построенный по МНК, пройти выше всех экспериментальных точек?'' |
| | | |
- | '' 3. По данным из следующей таблицы постройте с помощью MP Excel линейную, квадратичную, экспоненциальную и логариф-<br>мическую регрессионные модели. Определите параметры, выберите лучшую модель.<br><br> [[Image:инф97.jpg]]'''<br><br><br>'''Семакин И.Г., Хеннер Е.К., Информатика и ИКТ, 11'' | + | ''2. а) В чем смысл параметра R<sup>2</sup>? Какие значения он принимает?'' |
| + | |
| + | ''б) Какое значение примет параметр R<sup>2</sup> если тренд точно проходит через экспериментальные точки?'' |
| + | |
| + | ''3. По данным из следующей таблицы постройте с помощью MP Excel линейную, квадратичную, экспоненциальную и логарифмическую регрессионные модели. Определите параметры, выберите лучшую модель.<br><br> [[Image:Инф97.jpg|550px|Таблица]]'' |
| + | |
| + | '''''<br><br><br>'''Семакин И.Г., Хеннер Е.К., Информатика и ИКТ, 11'' |
| | | |
| ''Отослано читателями из интернет-сайтов''<br><br> | | ''Отослано читателями из интернет-сайтов''<br><br> |
Строка 74: |
Строка 82: |
| | | |
| '''<u>Содержание урока</u>''' | | '''<u>Содержание урока</u>''' |
- | '''[[Image:1236084776 kr.jpg|10x10px]] конспект урока ''' | + | '''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] конспект урока ''' |
- | [[Image:1236084776 kr.jpg|10x10px]] опорный каркас | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] опорный каркас |
- | [[Image:1236084776 kr.jpg|10x10px]] презентация урока | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] презентация урока |
- | [[Image:1236084776 kr.jpg|10x10px]] акселеративные методы | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] акселеративные методы |
- | [[Image:1236084776 kr.jpg|10x10px]] интерактивные технологии | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] интерактивные технологии |
| | | |
| '''<u>Практика</u>''' | | '''<u>Практика</u>''' |
- | [[Image:1236084776 kr.jpg|10x10px]] задачи и упражнения | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] задачи и упражнения |
- | [[Image:1236084776 kr.jpg|10x10px]] самопроверка | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] самопроверка |
- | [[Image:1236084776 kr.jpg|10x10px]] практикумы, тренинги, кейсы, квесты | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] практикумы, тренинги, кейсы, квесты |
- | [[Image:1236084776 kr.jpg|10x10px]] домашние задания | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] домашние задания |
- | [[Image:1236084776 kr.jpg|10x10px]] дискуссионные вопросы | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] дискуссионные вопросы |
- | [[Image:1236084776 kr.jpg|10x10px]] риторические вопросы от учеников | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] риторические вопросы от учеников |
- |
| + | |
| '''<u>Иллюстрации</u>''' | | '''<u>Иллюстрации</u>''' |
- | '''[[Image:1236084776 kr.jpg|10x10px]] аудио-, видеоклипы и мультимедиа ''' | + | '''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] аудио-, видеоклипы и мультимедиа ''' |
- | [[Image:1236084776 kr.jpg|10x10px]] фотографии, картинки | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] фотографии, картинки |
- | [[Image:1236084776 kr.jpg|10x10px]] графики, таблицы, схемы | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] графики, таблицы, схемы |
- | [[Image:1236084776 kr.jpg|10x10px]] юмор, анекдоты, приколы, комиксы | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] юмор, анекдоты, приколы, комиксы |
- | [[Image:1236084776 kr.jpg|10x10px]] притчи, поговорки, кроссворды, цитаты | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] притчи, поговорки, кроссворды, цитаты |
| | | |
| '''<u>Дополнения</u>''' | | '''<u>Дополнения</u>''' |
- | '''[[Image:1236084776 kr.jpg|10x10px]] рефераты''' | + | '''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] рефераты''' |
- | [[Image:1236084776 kr.jpg|10x10px]] статьи | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] статьи |
- | [[Image:1236084776 kr.jpg|10x10px]] фишки для любознательных | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] фишки для любознательных |
- | [[Image:1236084776 kr.jpg|10x10px]] шпаргалки | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] шпаргалки |
- | [[Image:1236084776 kr.jpg|10x10px]] учебники основные и дополнительные | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] учебники основные и дополнительные |
- | [[Image:1236084776 kr.jpg|10x10px]] словарь терминов | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] словарь терминов |
- | [[Image:1236084776 kr.jpg|10x10px]] прочие | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] прочие |
| | | |
| <u>Совершенствование учебников и уроков | | <u>Совершенствование учебников и уроков |
- | </u>'''[[Image:1236084776 kr.jpg|10x10px]] исправление ошибок в учебнике''' | + | </u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] исправление ошибок в учебнике''' |
- | [[Image:1236084776 kr.jpg|10x10px]] обновление фрагмента в учебнике | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] обновление фрагмента в учебнике |
- | [[Image:1236084776 kr.jpg|10x10px]] элементы новаторства на уроке | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] элементы новаторства на уроке |
- | [[Image:1236084776 kr.jpg|10x10px]] замена устаревших знаний новыми | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] замена устаревших знаний новыми |
- |
| + | |
| '''<u>Только для учителей</u>''' | | '''<u>Только для учителей</u>''' |
- | '''[[Image:1236084776 kr.jpg|10x10px]] идеальные уроки ''' | + | '''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] идеальные уроки ''' |
- | [[Image:1236084776 kr.jpg|10x10px]] календарный план на год | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] календарный план на год |
- | [[Image:1236084776 kr.jpg|10x10px]] методические рекомендации | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] методические рекомендации |
- | [[Image:1236084776 kr.jpg|10x10px]] программы | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] программы |
- | [[Image:1236084776 kr.jpg|10x10px]] обсуждения | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] обсуждения |
| | | |
| | | |
Версия 19:28, 6 июля 2012
Гипермаркет знаний>>Информатика>>Информатика 11 класс>>Информатика: Метод наименьших квадратов
Метод наименьших квадратов
Получение регрессионной модели происходит в два этапа:
1) подбор вида функции;
2) вычисление параметров функции.
Первая задача не имеет строгого решения. Здесь может помочь опыт и интуиция исследователя, а возможен и «слепой» перебор из конечного числа функций и выбор лучшей из них.
Чаще всего выбор производится среди следующих функций:
у = ах + b — линейная функция;
у = ах2 + Ьх + с — квадратичная функция;
у = аln(х) + Ь — логарифмическая функция;
у = аеbx — экспоненциальная функция;
у = ахb ~ степенная функция.
Квадратичная функция называется в математике полиномом второй степени. Иногда используются полиномы и более высоких степеней, например, полином третьей степени имеет вид: у = ах3 + bx2 + сх + d.
Во всех этих формулах х — аргумент, у — значение функции, а, b, с, d — параметры функций. Ln(x) — натуральный логарифм, е - константа, основание натурального логарифма.
Если вы выбрали (сознательно или наугад) одну из предлагаемых функций, то следующим шагом нужно подобрать параметры (а, b, с и пр.) так, чтобы функция располагалась как можно ближе к экспериментальным точкам. Что значит «располагалась как можно ближе»? Ответить на этот вопрос — значит предложить метод вычисления параметров.
Такой метод был предложен в XVIII веке немецким математиком К. Гауссом. Он называется методом наименьших квадратов (МНК). Суть его заключается в следующем: искомая функция должна быть построена так, чтобы сумма квадратов отклонений у- координат всех экспериментальных точек от у-координат графика функции была бы минимальной.
Мы не будем здесь производить подробное математическое описание метода наименьших квадратов. Достаточно того, что вы теперь знаете о существовании такого метода. Он очень широко используется в статистической обработке данных и встроен во многие математические пакеты программ. Важно понимать следующее: методом наименьших квадратов по данному набору экспериментальных точек можно построить любую (в том числе и из рассмотренных выше) функцию. А вот будет ли она нас удовлетворять, это уже другой вопрос — вопрос критерия соответствия. На рис. 2.14 изображены три функции, построенные методом наименьших квадратов по данным, представленным в предыдущей теме.
Рис. 2.14. Использование метода наименьших квадратов
Данные рисунки получены с помощью MS Excel. График регрессионной модели называется трендом. Английское слово trend можно перевести как общее направление, или тенденция.
Уже с первого взгляда хочется отбраковать вариант линейного тренда. График линейной функции — это прямая. Полученная по МНК прямая отражает факт роста заболеваемости от концентрации угарного газа, но по этому графику трудно что-либо сказать о характере этого роста. А вот квадратичный и экспоненциальный тренды ведут себя очень правдоподобно. Теперь пора обратить внимание на надписи, присутствующие на графиках. Во-первых, это записанные в явном виде искомые функции — регрессионные модели:
линейная функция: у =46,361х - 99,881;
экспоненциальная функция: у = 3,4302 е0.7555x;
квадратичная функция: у = 21,845х2 - 106,97x +150,21.
На графиках присутствует еще одна величина, полученная в результате построения трендов. Она обозначена как R2. В статистике эта величина называется коэффициентом детерминированности. Именно она определяет, насколько удачной является полученная регрессионная модель. Коэффициент детерминированности всегда заключен в диапазоне от 0 до 1. Если он равен 1, то функция точно проходит через табличные значения, если О, то выбранный вид регрессионной модели предельно неудачен. Чем R2 ближе к 1, тем удачнее регрессионная модель.
Из трех выбранных моделей значение R2 наименьшее у линейной. Значит, она самая неудачная (нам и так это было понятно). Значения же R2 у двух других моделей достаточно близки (разница меньше одной 0,01). Если определить погрешность решения данной задачи как 0,01, по критерию R2 эти модели нельзя разделить. Они одинаково удачны. Здесь могут вступить в силу качественные соображения.
Например, если считать, что наиболее существенно влияние концентрации угарного газа проявляется при больших величинах, то глядя на графики, предпочтение следует отдать квадратичной модели. Она лучше отражает резкий рост заболеваемости при больших концентрациях примеси.
Интересный факт: опыт показывает, что если человеку предложить на данной точечной диаграмме провести на глаз прямую так, чтобы точки были равномерно разбросаны вокруг нее, то он проведет линию, достаточно близкую к той, что дает МНК.
Коротко о главном
Метод наименьших квадратов используется для вычисления параметров регрессионной модели. Этот метод содержится в математическом арсенале электронных таблиц (в том числе и в MS Excel).
Выбор типа регрессионной модели пользователь производит сам, а МНК позволяет построить функцию такого типа, наиболее близкую к экспериментальным данным.
Характеристикой построенной модели является параметр R2 — коэффициент детерминированности. Чем его значение ближе к 1, тем модель лучше.
Может оказаться, что несколько моделей имеют близкий параметр R2. В этом случае пользователь выбирает из них наиболее подходящую, исходя из эмпирических соображении.
Вопросы и задания
1. а) Для чего используется метод наименьших квадратов?
б) Что такое тренд?
в) Как располагается линия тренда, построенная по МНК, относительно экспериментальных точек?
г) Может ли тренд, построенный по МНК, пройти выше всех экспериментальных точек?
2. а) В чем смысл параметра R2? Какие значения он принимает?
б) Какое значение примет параметр R2 если тренд точно проходит через экспериментальные точки?
3. По данным из следующей таблицы постройте с помощью MP Excel линейную, квадратичную, экспоненциальную и логарифмическую регрессионные модели. Определите параметры, выберите лучшую модель.
Семакин И.Г., Хеннер Е.К., Информатика и ИКТ, 11
Отослано читателями из интернет-сайтов
Содержание урока
конспект урока
опорный каркас
презентация урока
акселеративные методы
интерактивные технологии
Практика
задачи и упражнения
самопроверка
практикумы, тренинги, кейсы, квесты
домашние задания
дискуссионные вопросы
риторические вопросы от учеников
Иллюстрации
аудио-, видеоклипы и мультимедиа
фотографии, картинки
графики, таблицы, схемы
юмор, анекдоты, приколы, комиксы
притчи, поговорки, кроссворды, цитаты
Дополнения
рефераты
статьи
фишки для любознательных
шпаргалки
учебники основные и дополнительные
словарь терминов
прочие
Совершенствование учебников и уроков
исправление ошибок в учебнике
обновление фрагмента в учебнике
элементы новаторства на уроке
замена устаревших знаний новыми
Только для учителей
идеальные уроки
календарный план на год
методические рекомендации
программы
обсуждения
Интегрированные уроки
Если у вас есть исправления или предложения к данному уроку, напишите нам.
Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум.
|