|  |   | 
| Строка 1: | Строка 1: | 
| - | <metakeywords>Гипермаркет Знаний - первый в мире!, Гипермаркет Знаний, Математика, 8 класс, Алгебра, урок, на Тему,  Параллелограмм</metakeywords> | + | <metakeywords>Гипермаркет Знаний - первый в мире!, Гипермаркет Знаний, Математика, 8 класс, Алгебра, урок, на Тему, Параллелограмм, четырехугольник, треугольники, параллельность</metakeywords>   | 
|  |  |  |  | 
|  | '''[[Гипермаркет знаний - первый в мире!|Гипермаркет знаний]]>>[[Математика|Математика]]>>[[Математика 8 класс|Математика 8 класс]]>>Математика: Параллелограмм'''   |  | '''[[Гипермаркет знаний - первый в мире!|Гипермаркет знаний]]>>[[Математика|Математика]]>>[[Математика 8 класс|Математика 8 класс]]>>Математика: Параллелограмм'''   | 
| Строка 5: | Строка 5: | 
|  | <br>   |  | <br>   | 
|  |  |  |  | 
| - | '''                                                                ПАРАЛЛЕЛОГРАММ''' | + | '''Параллелограмм'''   | 
|  |  |  |  | 
| - | '''''<br>Параллелограмм — это четырехугольник, у которого противолежащие стороны параллельны, т. е. лежат на параллельных прямых''''' (рис. 118). | + | <br>'''[[Паралелограм. Ознаки паралелограма. Властивості паралелограма|Параллелограмм]]''' — это четырехугольник, у которого противолежащие стороны параллельны, т. е. лежат на параллельных прямых(рис. 118).   | 
|  |  |  |  | 
| - | Теорема 6.1. '''''Если диагонали четырехугольника пересекаются и точкой пересечения делятся пополам, то этотчетырехугольник — параллелограмм.''''' | + | Теорема 6.1. Если диагонали четырехугольника пересекаются и точкой пересечения делятся пополам, то этот '''[[Склад числа 4.Чотирикутник. Розпізнавання геометричних фігур. Задачі та вправи|четырехугольник]]''' — параллелограмм.  | 
|  |  |  |  | 
| - | Доказательство. Пусть ABCD — данный четырехугольник и О — точка пересечения его диагоналей (рис. 119). | + | Доказательство. Пусть ABCD — данный четырехугольник и О — точка пересечения его диагоналей (рис. 119).   | 
|  |  |  |  | 
| - | Треугольники AOD и СОВ равны. У них углы при вершине О равны как вертикальные, а OD = OB и ОА = ОС по условию теоремы.
 | + | '''[[Треугольник. Полные уроки|треугольники]]''' AOD и СОВ равны. У них углы при вершине О равны как вертикальные, а OD = OB и ОА = ОС по условию теоремы.   | 
|  |  |  |  | 
| - | Значит, углы ОВС и ODA равны. А они являются внутренними накрест лежащими для прямых AD и ВС и секущей BD. По признаку параллельности прямых прямые AD и ВС параллельны. Так же доказывается параллельность прямых АВ и CD с помощью равенства треугольников АОВ и COD. | + | Значит, углы ОВС и ODA равны. А они являются внутренними накрест лежащими для прямых AD и ВС и секущей BD. По признаку параллельности прямых прямые AD и ВС параллельны. Так же доказывается '''[[Параллельность прямых. Полные уроки|параллельность]]''' прямых АВ и CD с помощью равенства треугольников АОВ и COD.   | 
|  |  |  |  | 
|  | Так как противолежащие стороны четырехугольника параллельны, то по определению этот четырехугольник — параллелограмм. Теорема доказана.   |  | Так как противолежащие стороны четырехугольника параллельны, то по определению этот четырехугольник — параллелограмм. Теорема доказана.   | 
|  |  |  |  | 
|  | + | <br>  | 
|  |  |  |  | 
|  | + | [[Image:22-06-3.jpg|480px|Параллелограмм]]  | 
|  |  |  |  | 
| - | [[Image:22-06-3.jpg]] | + | <br> ''А. В. Погорелов,'''[http://xvatit.com/vuzi/ Геометрия]''' для 7-11 классов, Учебник для общеобразовательных учреждений'' <br>  | 
|  |  |  |  | 
| - | <br> ''А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений'' <br>
 | + | <br>   | 
|  |  |  |  | 
|  | <sub>[[Гипермаркет знаний - первый в мире!|онлайн]] библиотека с учебниками и книгами, планы конспектов уроков по математике, задания по математике 8 класса [[Математика|скачать]]</sub>   |  | <sub>[[Гипермаркет знаний - первый в мире!|онлайн]] библиотека с учебниками и книгами, планы конспектов уроков по математике, задания по математике 8 класса [[Математика|скачать]]</sub>   | 
| Строка 30: | Строка 32: | 
|  |  |  |  | 
|  |   '''<u>Содержание урока</u>''' |  |   '''<u>Содержание урока</u>''' | 
| - |   <u></u>'''[[Image:1236084776 kr.jpg|10x10px]] конспект урока                       ''' | + |   <u></u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] конспект урока                       ''' | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] опорный каркас    | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] опорный каркас    | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] презентация урока | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] презентация урока | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] акселеративные методы   | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] акселеративные методы   | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] интерактивные технологии   | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] интерактивные технологии   | 
|  |     |  |     | 
|  |   '''<u>Практика</u>''' |  |   '''<u>Практика</u>''' | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] задачи и упражнения   | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] задачи и упражнения   | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] самопроверка | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] самопроверка | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] практикумы, тренинги, кейсы, квесты | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] практикумы, тренинги, кейсы, квесты | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] домашние задания | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] домашние задания | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] дискуссионные вопросы | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] дискуссионные вопросы | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] риторические вопросы от учеников | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] риторические вопросы от учеников | 
| - |   
 | + |   | 
|  |   '''<u>Иллюстрации</u>''' |  |   '''<u>Иллюстрации</u>''' | 
| - |   <u></u>'''[[Image:1236084776 kr.jpg|10x10px]] аудио-, видеоклипы и мультимедиа ''' | + |   <u></u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] аудио-, видеоклипы и мультимедиа ''' | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] фотографии, картинки   | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] фотографии, картинки   | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] графики, таблицы, схемы | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] графики, таблицы, схемы | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] юмор, анекдоты, приколы, комиксы | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] юмор, анекдоты, приколы, комиксы | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] притчи, поговорки, кроссворды, цитаты | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] притчи, поговорки, кроссворды, цитаты | 
|  |     |  |     | 
|  |   '''<u>Дополнения</u>''' |  |   '''<u>Дополнения</u>''' | 
| - |   <u></u>'''[[Image:1236084776 kr.jpg|10x10px]] рефераты''' | + |   <u></u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] рефераты''' | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] статьи   | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] статьи   | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] фишки для любознательных   | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] фишки для любознательных   | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] шпаргалки   | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] шпаргалки   | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] учебники основные и дополнительные | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] учебники основные и дополнительные | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] словарь терминов                            | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] словарь терминов                            | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] прочие   | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] прочие   | 
|  |   '''<u></u>''' |  |   '''<u></u>''' | 
|  |   <u>Совершенствование учебников и уроков |  |   <u>Совершенствование учебников и уроков | 
| - |   </u>'''[[Image:1236084776 kr.jpg|10x10px]] исправление ошибок в учебнике''' | + |   </u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] исправление ошибок в учебнике''' | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] обновление фрагмента в учебнике   | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] обновление фрагмента в учебнике   | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] элементы новаторства на уроке   | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] элементы новаторства на уроке   | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] замена устаревших знаний новыми   | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] замена устаревших знаний новыми   | 
| - |   
 | + |   | 
|  |   '''<u>Только для учителей</u>''' |  |   '''<u>Только для учителей</u>''' | 
| - |   <u></u>'''[[Image:1236084776 kr.jpg|10x10px]] идеальные уроки ''' | + |   <u></u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] идеальные уроки ''' | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] календарный план на год    | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] календарный план на год    | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] методические рекомендации    | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] методические рекомендации    | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] программы | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] программы | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] обсуждения | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] обсуждения | 
|  |     |  |     | 
|  |     |  |     | 
Теорема 6.1. Если диагонали четырехугольника пересекаются и точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм. 
Доказательство. Пусть ABCD — данный четырехугольник и О — точка пересечения его диагоналей (рис. 119). 
Значит, углы ОВС и ODA равны. А они являются внутренними накрест лежащими для прямых AD и ВС и секущей BD. По признаку параллельности прямых прямые AD и ВС параллельны. Так же доказывается параллельность прямых АВ и CD с помощью равенства треугольников АОВ и COD. 
Так как противолежащие стороны четырехугольника параллельны, то по определению этот четырехугольник — параллелограмм. Теорема доказана. 
Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум.