|
|
Строка 1: |
Строка 1: |
- | <metakeywords>Гипермаркет Знаний - первый в мире!, Гипермаркет Знаний, Математика, 8 класс, Алгебра, урок, на Тему, Преобразования фигур</metakeywords> | + | <metakeywords>Гипермаркет Знаний - первый в мире!, Гипермаркет Знаний, Математика, 8 класс, Алгебра, урок, на Тему, Преобразования фигур, преобразованием, точки</metakeywords> |
| | | |
| '''[[Гипермаркет знаний - первый в мире!|Гипермаркет знаний]]>>[[Математика|Математика]]>>[[Математика 8 класс|Математика 8 класс]]>>Математика: Преобразования фигур''' | | '''[[Гипермаркет знаний - первый в мире!|Гипермаркет знаний]]>>[[Математика|Математика]]>>[[Математика 8 класс|Математика 8 класс]]>>Математика: Преобразования фигур''' |
| | | |
| + | <br> '''Преобразования фигур''' |
| | | |
- | '''ПРЕОБРАЗОВАНИЯ ФИГУР'''
| + | <br>Если каждую точку данной фигуры сместить каким-нибудь образом, то мы получим новую фигуру. Говорят, что эта фигура получена [[Презентація уроку: Перетворення подібності. Гомотетія, властивості подібних фігур.|преобразованием]] из данной (рис. 182). |
| | | |
- | <br>Если каждую точку данной фигуры сместить каким-нибудь образом, то мы получим новую фигуру. Говорят, что эта фигура получена преобразованием из данной (рис. 182).
| + | Преобразование одной фигуры в другую называется движением, если оно сохраняет расстояние между точками, т. е. переводит любые две точки X и У одной фигуры в точки X', У другой фигуры так, что XY=X'Y' (рис. 183). |
| | | |
- | Преобразование одной фигуры в другую называется движением, если оно сохраняет расстояние между точками, т. е. переводит любые две точки X и У одной фигуры в точки X', У другой фигуры так, что XY=X'Y' (рис. 183).
| + | Замечание. Понятие движения в геометрии связано с обычным представлением о перемещении. Но если, говоря о перемещении, мы представляем себе непрерывный процесс, то в геометрии для нас будут иметь значение только начальное и конечное положения [[Геометрические фигуры|фигуры]].<br> <br>[[Image:22-06-135.jpg|480px|Преобразования фигур]]<br> <br>[[Image:22-06-136.jpg|480px|Преобразования фигур]]<br> <br>Пусть фигура F переводится движением в фигуру F', а фигура F' переводится движением в фигуру F" (рис. 184). Пусть при первом движении точка X фигуры F переходит в точку X' фигуры F', а при втором движении точка X' фигуры F' переходит в точку X" фигуры F". Тогда преобразование фигуры F в фигуру F", при котором произвольная точка X фигуры F переходит в точку X" фигуры F", сохраняет расстояние между точками, а значит, также является движением. |
| | | |
- | Замечание. Понятие движения в геометрии связано с обычным представлением о перемещении. Но если, говоря о перемещении, мы представляем себе непрерывный процесс, то в геометрии для нас будут иметь значение только начальное и конечное положения фигуры.<br> <br>[[Image:22-06-135.jpg]]<br> <br>[[Image:22-06-136.jpg]]<br> <br>Пусть фигура F переводится движением в фигуру F', а фигура F' переводится движением в фигуру F" (рис. 184). Пусть при первом движении точка X фигуры F переходит в точку X' фигуры F', а при втором движении точка X' фигуры F' переходит в точку X" фигуры F". Тогда преобразование фигуры F в фигуру F", при котором произвольная точка X фигуры F переходит в точку X" фигуры F", сохраняет расстояние между точками, а значит, также является движением.
| + | Это свойство движения выражают словами: два движения, выполненные последовательно, дают снова движение. |
| | | |
- | Это свойство движения выражают словами: два движения, выполненные последовательно, дают снова движение.
| + | Пусть преобразование фигуры F в фигуру F' переводит различные точки фигуры F в различные [[Точки і прямі, їх властивості. Закриті вправи|точки]] фигуры F' (см. рис. 182). Пусть произвольная точка X фигуры F при этом преобразовании переходит в точку X' фигуры F'. Преобразование фигуры F' в фигуру F, при котором точка X' переходит в точку X, называется преобразованием, обратным данному. Движение сохраняет расстояние между точками, поэтому переводит различные точки в различные. |
| | | |
- | Пусть преобразование фигуры F в фигуру F' переводит различные точки фигуры F в различные точки фигуры F' (см. рис. 182). Пусть произвольная точка X фигуры F при этом преобразовании переходит в точку X' фигуры F'. Преобразование фигуры F' в фигуру F, при котором точка X' переходит в точку X, называется преобразованием, обратным данному. Движение сохраняет расстояние между точками, поэтому переводит различные точки в различные.
| + | Очевидно, преобразование, обратное движению, также является движением.<br> |
| | | |
- | Очевидно, преобразование, обратное движению, также является движением.<br>
| + | <br> ''А. В. Погорелов, [http://xvatit.com/vuzi/ Геометрия] для 7-11 классов, Учебник для общеобразовательных учреждений'' <br> |
| | | |
| | | |
- |
| |
- | <br> ''А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений'' <br>
| |
| | | |
| <sub>Книги и учебники согласно календарному плануванння по математике 8 класса [[Математика|скачать]], помощь школьнику [[Гипермаркет знаний - первый в мире!|онлайн]]</sub> | | <sub>Книги и учебники согласно календарному плануванння по математике 8 класса [[Математика|скачать]], помощь школьнику [[Гипермаркет знаний - первый в мире!|онлайн]]</sub> |
Строка 27: |
Строка 26: |
| | | |
| '''<u>Содержание урока</u>''' | | '''<u>Содержание урока</u>''' |
- | <u></u>'''[[Image:1236084776 kr.jpg|10x10px]] конспект урока ''' | + | <u></u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] конспект урока ''' |
- | [[Image:1236084776 kr.jpg|10x10px]] опорный каркас | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] опорный каркас |
- | [[Image:1236084776 kr.jpg|10x10px]] презентация урока | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] презентация урока |
- | [[Image:1236084776 kr.jpg|10x10px]] акселеративные методы | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] акселеративные методы |
- | [[Image:1236084776 kr.jpg|10x10px]] интерактивные технологии | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] интерактивные технологии |
| | | |
| '''<u>Практика</u>''' | | '''<u>Практика</u>''' |
- | [[Image:1236084776 kr.jpg|10x10px]] задачи и упражнения | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] задачи и упражнения |
- | [[Image:1236084776 kr.jpg|10x10px]] самопроверка | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] самопроверка |
- | [[Image:1236084776 kr.jpg|10x10px]] практикумы, тренинги, кейсы, квесты | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] практикумы, тренинги, кейсы, квесты |
- | [[Image:1236084776 kr.jpg|10x10px]] домашние задания | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] домашние задания |
- | [[Image:1236084776 kr.jpg|10x10px]] дискуссионные вопросы | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] дискуссионные вопросы |
- | [[Image:1236084776 kr.jpg|10x10px]] риторические вопросы от учеников | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] риторические вопросы от учеников |
- |
| + | |
| '''<u>Иллюстрации</u>''' | | '''<u>Иллюстрации</u>''' |
- | <u></u>'''[[Image:1236084776 kr.jpg|10x10px]] аудио-, видеоклипы и мультимедиа ''' | + | <u></u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] аудио-, видеоклипы и мультимедиа ''' |
- | [[Image:1236084776 kr.jpg|10x10px]] фотографии, картинки | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] фотографии, картинки |
- | [[Image:1236084776 kr.jpg|10x10px]] графики, таблицы, схемы | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] графики, таблицы, схемы |
- | [[Image:1236084776 kr.jpg|10x10px]] юмор, анекдоты, приколы, комиксы | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] юмор, анекдоты, приколы, комиксы |
- | [[Image:1236084776 kr.jpg|10x10px]] притчи, поговорки, кроссворды, цитаты | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] притчи, поговорки, кроссворды, цитаты |
| | | |
| '''<u>Дополнения</u>''' | | '''<u>Дополнения</u>''' |
- | <u></u>'''[[Image:1236084776 kr.jpg|10x10px]] рефераты''' | + | <u></u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] рефераты''' |
- | [[Image:1236084776 kr.jpg|10x10px]] статьи | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] статьи |
- | [[Image:1236084776 kr.jpg|10x10px]] фишки для любознательных | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] фишки для любознательных |
- | [[Image:1236084776 kr.jpg|10x10px]] шпаргалки | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] шпаргалки |
- | [[Image:1236084776 kr.jpg|10x10px]] учебники основные и дополнительные | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] учебники основные и дополнительные |
- | [[Image:1236084776 kr.jpg|10x10px]] словарь терминов | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] словарь терминов |
- | [[Image:1236084776 kr.jpg|10x10px]] прочие | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] прочие |
| '''<u></u>''' | | '''<u></u>''' |
| <u>Совершенствование учебников и уроков | | <u>Совершенствование учебников и уроков |
- | </u>'''[[Image:1236084776 kr.jpg|10x10px]] исправление ошибок в учебнике''' | + | </u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] исправление ошибок в учебнике''' |
- | [[Image:1236084776 kr.jpg|10x10px]] обновление фрагмента в учебнике | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] обновление фрагмента в учебнике |
- | [[Image:1236084776 kr.jpg|10x10px]] элементы новаторства на уроке | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] элементы новаторства на уроке |
- | [[Image:1236084776 kr.jpg|10x10px]] замена устаревших знаний новыми | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] замена устаревших знаний новыми |
- |
| + | |
| '''<u>Только для учителей</u>''' | | '''<u>Только для учителей</u>''' |
- | <u></u>'''[[Image:1236084776 kr.jpg|10x10px]] идеальные уроки ''' | + | <u></u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] идеальные уроки ''' |
- | [[Image:1236084776 kr.jpg|10x10px]] календарный план на год | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] календарный план на год |
- | [[Image:1236084776 kr.jpg|10x10px]] методические рекомендации | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] методические рекомендации |
- | [[Image:1236084776 kr.jpg|10x10px]] программы | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] программы |
- | [[Image:1236084776 kr.jpg|10x10px]] обсуждения | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] обсуждения |
| | | |
| | | |
Текущая версия на 12:43, 9 октября 2012
Гипермаркет знаний>>Математика>>Математика 8 класс>>Математика: Преобразования фигур
Преобразования фигур
Если каждую точку данной фигуры сместить каким-нибудь образом, то мы получим новую фигуру. Говорят, что эта фигура получена преобразованием из данной (рис. 182).
Преобразование одной фигуры в другую называется движением, если оно сохраняет расстояние между точками, т. е. переводит любые две точки X и У одной фигуры в точки X', У другой фигуры так, что XY=X'Y' (рис. 183).
Замечание. Понятие движения в геометрии связано с обычным представлением о перемещении. Но если, говоря о перемещении, мы представляем себе непрерывный процесс, то в геометрии для нас будут иметь значение только начальное и конечное положения фигуры.
Пусть фигура F переводится движением в фигуру F', а фигура F' переводится движением в фигуру F" (рис. 184). Пусть при первом движении точка X фигуры F переходит в точку X' фигуры F', а при втором движении точка X' фигуры F' переходит в точку X" фигуры F". Тогда преобразование фигуры F в фигуру F", при котором произвольная точка X фигуры F переходит в точку X" фигуры F", сохраняет расстояние между точками, а значит, также является движением.
Это свойство движения выражают словами: два движения, выполненные последовательно, дают снова движение.
Пусть преобразование фигуры F в фигуру F' переводит различные точки фигуры F в различные точки фигуры F' (см. рис. 182). Пусть произвольная точка X фигуры F при этом преобразовании переходит в точку X' фигуры F'. Преобразование фигуры F' в фигуру F, при котором точка X' переходит в точку X, называется преобразованием, обратным данному. Движение сохраняет расстояние между точками, поэтому переводит различные точки в различные.
Очевидно, преобразование, обратное движению, также является движением.
А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений
Книги и учебники согласно календарному плануванння по математике 8 класса скачать, помощь школьнику онлайн
Содержание урока
конспект урока
опорный каркас
презентация урока
акселеративные методы
интерактивные технологии
Практика
задачи и упражнения
самопроверка
практикумы, тренинги, кейсы, квесты
домашние задания
дискуссионные вопросы
риторические вопросы от учеников
Иллюстрации
аудио-, видеоклипы и мультимедиа
фотографии, картинки
графики, таблицы, схемы
юмор, анекдоты, приколы, комиксы
притчи, поговорки, кроссворды, цитаты
Дополнения
рефераты
статьи
фишки для любознательных
шпаргалки
учебники основные и дополнительные
словарь терминов
прочие
Совершенствование учебников и уроков
исправление ошибок в учебнике
обновление фрагмента в учебнике
элементы новаторства на уроке
замена устаревших знаний новыми
Только для учителей
идеальные уроки
календарный план на год
методические рекомендации
программы
обсуждения
Интегрированные уроки
Если у вас есть исправления или предложения к данному уроку, напишите нам.
Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум.
|