User16 (Обсуждение | вклад)
(Создана новая страница размером <metakeywords>Гипермаркет Знаний - первый в мире!, Гипермаркет Знаний, Математика, ...) Следующая правка → Версия 11:44, 22 июня 2010
Гипермаркет знаний>>Математика>>Математика 8 класс>>Математика: Определение декартовых координат
ОПРЕДЕЛЕНИЕ ДЕКАРТОВЫХ КООРДИНАТ
Каждой точке А плоскости мы сопоставим пару чисел — координаты точки — абсциссу (x) и ординату (у) по такому правилу. Через точку А проведем прямую, параллельную оси ординат (рис. 171). Она пересечет ось абсцисс х в некоторой точке Ах. Абсциссой точки А мы будем называть число х, абсолютная величина которого равна расстоянию от точки О до точки Ах. Это число будет положительным, если Ах принадлежит положительной полуоси, и отрицательным, если Ах Ордината (у) точки А определяется аналогично. Через точку А проведем прямую, параллельную оси абсцисс x (см. рис. 171). Она пересечет ось ординат у в некоторой точке Ay. Ординатой точки А мы будем называть число у, абсолютная величина которого равна расстоянию от точки О до точки Ay. Это число будет положительным, если Ау принадлежит положительной полуоси,и отрицательным, если Ау принадлежит отрицательной полуоси. Если точка А лежит на оси абсцисс x, то полагаем у равным нулю. Координаты точки будем записывать в скобках рядом с буквенным обозначением точки, например: А (х; у) (на первом месте абсцисса, на втором — ордината).
Оси координат разбивают плоскость на четыре части — четверти: I, II, III, IV (рис. 172). В пределах одной четверти знаки обеих координат сохраняются и имеют значения, указанные на рисунке.
Плоскость, на которой введены описанным выше способом координаты хну, будем называть плоскостью ху. Произвольную точку на этой плоскости с координатами XVI у будем иногда обозначать просто (х; у). Введенные на плоскости координаты xw.y называются декартовыми по имени Р. Декарта, который впервые применил их в своих исследованиях. Задача (9). Даны точки А ( — 3; 2) и В (4; 1). Докажите, что отрезок АВ пересекает ось у, но не пересекает ось x. Решение. Ось у разбивает плоскость ху на две полуплоскости. В одной полуплоскости абсциссы точек положительны, а в другой — отрицательны. Так как у точек А и В абсциссы противоположных знаков, то точки А и В лежат в разных полуплоскостях. А это значит, что отрезок АВ пересекает ось у. Ось x также разбивает плоскость ху на две полуплоскости. В одной полуплоскости ординаты точек положительны, а в другой — отрицательны. У точек А и В ординаты одного знака (положительны). Значит, точки А и В лежат в одной полуплоскости. А следовательно, отрезок АВ не пересекается с осью х.
онлайн библиотека с учебниками и книгами, планы конспектов уроков по математике, задания по математике 8 класса скачать
Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки
Если у вас есть исправления или предложения к данному уроку, напишите нам. Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум. |
Авторські права | Privacy Policy |FAQ | Партнери | Контакти | Кейс-уроки
© Автор системы образования 7W и Гипермаркета Знаний - Владимир Спиваковский
При использовании материалов ресурса
ссылка на edufuture.biz обязательна (для интернет ресурсов -
гиперссылка).
edufuture.biz 2008-© Все права защищены.
Сайт edufuture.biz является порталом, в котором не предусмотрены темы политики, наркомании, алкоголизма, курения и других "взрослых" тем.
Ждем Ваши замечания и предложения на email:
По вопросам рекламы и спонсорства пишите на email: