| 
 
 
 Версия 13:20, 23 июня 2010 
 Гипермаркет знаний>>Математика>>Математика 9 класс>>Математика: Преобразование подобия 
 
                                                ПРЕОБРАЗОВАНИЕ ПОДОБИЯ
 Преобразование фигуры F в фигуру F' называется преобразованием подобия, если при этом преобразовании расстояния между точками изменяются в одно и то же число раз (рис. 233). Это значит, что если произвольные точки X, Y фигуры F при преобразовании подобия переходят в точки X', Y' фигуры F', то X'Y' = k-XY, причем число k — одно и то же для всех точек X, У. Число k называется коэффициентом подобия. При k = l преобразование подобия, очевидно, является движением.
 Л
 
 Пусть F — данная фигура и О — фиксированная точка (рис. 234). Проведем через произвольную точку X фигуры F луч ОХ и отложим на нем отрезок ОХ', равный к-ОХ, где k — положительное число. Преобразование фигуры F, при котором каждая ее точка X переходит в точку X', построенную указанным способом, называется гомотетией относительно центра О. Число k называется коэффициентом гомотетии, фигуры F и F' называются гомотетичными.
 Теорема 11.1. Гомотетия есть преобразование подобия.
 Доказательство. Пусть О — центр гомотетии, k — коэффициент гомотетии, X и У — две произвольные точки фигуры (рис. 235).
 
 При гомотетии точки X к Y переходят в точки X' и У на лучах ОХ и OY соответственно, причем OX' = k-OX, OY'= = k-OY. Отсюда следуют векторные равенства
 ОХ'^кОХ, OY' = kOY. Вычитая эти равенства почленно, получим:
 ОУ' -ОХ' = к (ОУ - ОХ).
 Так как OY'— ОХ'= X'Y', OY-OX=XY, то X'Y' = kXY. Значит, \X'Y'\=-k |ХУ|, т. е. X'Y' = kXY. Следовательно, гомотетия есть преобразование подобия. Теорема доказана.
 Преобразование подобия широко применяется на практике при выполнении чертежей деталей машин, сооружений, планов местности и др. Эти изображения представляют собой подобные преобразования воображаемых изображений в натуральную величину. Коэффициент подобия при этом называется масштабом. Например, если участок местности изображается в масштабе 1:100, то это значит, что одному сантиметру на плане соответствует 1 м на местности.
 Задача (4). На рисунке 236 изображен план усадьбы в масштабе 1:1000. Определите размеры усадьбы (длину и ширину).
 Решение. Длина и ширина усадьбы на плане равны 4 см и 2,7 см. Так как план выполнен в масштабе 1:1000, то размеры усадьбы равны соответственно 2,7 X1000 см = = 27 м, 4X1000 см = 40 м.
 
 А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений
 
 Материалы по математике онлайн, задачи и ответы по классам, планы конспектов уроков по математике скачать 
 
 Содержание урока
 конспект урока  опорный каркас  презентация урока  акселеративные методы  интерактивные технологии 
Практика  задачи и упражнения  самопроверка  практикумы, тренинги, кейсы, квесты  домашние задания  дискуссионные вопросы  риторические вопросы от учеников
 
Иллюстрации  аудио-, видеоклипы и мультимедиа  фотографии, картинки  графики, таблицы, схемы  юмор, анекдоты, приколы, комиксы  притчи, поговорки, кроссворды, цитаты
Дополнения  рефераты  статьи  фишки для любознательных  шпаргалки  учебники основные и дополнительные  словарь терминов  прочие 
Совершенствование учебников и уроков  исправление ошибок в учебнике  обновление фрагмента в учебнике  элементы новаторства на уроке  замена устаревших знаний новыми 
 
Только для учителей  идеальные уроки  календарный план на год  методические рекомендации  программы  обсуждения
Интегрированные уроки 
 Если у вас есть исправления или предложения к данному уроку, напишите нам. 
 Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум.
 
 
 
 |