|
|
Строка 17: |
Строка 17: |
| '''Ответ:''' [[Image:Al615.jpg]] | | '''Ответ:''' [[Image:Al615.jpg]] |
| | | |
- | '''3. Метод введения новых переменных'''<br>С методом введения новой переменной при решении рациональных уравнений с одной переменной вы познакомились в курсе алгебры 8-го класса. Суть этого метода при решении систем уравнений та же самая, но с технической точки зрения имеются некоторые особенности, которые мы и обсудим в следующих примерах.<br>'''Пример 3.''' Решить систему уравнений [[Image:al616.jpg]] | + | '''3. Метод введения новых переменных'''<br>С методом введения новой переменной при решении рациональных уравнений с одной переменной вы познакомились в курсе алгебры 8-го класса. Суть этого метода при решении систем уравнений та же самая, но с технической точки зрения имеются некоторые особенности, которые мы и обсудим в следующих примерах.<br>'''Пример 3.''' Решить систему уравнений [[Image:Al616.jpg]] |
| | | |
- | '''Решение.''' Введем новую переменную [[Image:al617.jpg]] Тогда первое уравнение системы можно будет переписать в более простом виде: [[Image:al618.jpg]] Решим это уравнение относительно переменной t: | + | '''Решение.''' Введем новую переменную [[Image:Al617.jpg]] Тогда первое уравнение системы можно будет переписать в более простом виде: [[Image:Al618.jpg]] Решим это уравнение относительно переменной t: |
| | | |
- | [[Image:al619.jpg]]<br>Оба эти значения удовлетворяют условию [[Image:al620.jpg]], а потому являются корнями рационального уравнения с переменной t.<br>Но [[Image:al621.jpg]] значит, либо [[Image:al622.jpg]] откуда находим, что х = 2у, либо [[Image:al623.jpg]]<br>Таким образом, с помощью метода введения новой переменной нам удалось как бы «расслоить» первое уравнение системы, достаточно сложное по виду, на два более простых уравнения:<br>х = 2 у; у — 2х.<br> | + | [[Image:Al619.jpg]]<br>Оба эти значения удовлетворяют условию [[Image:Al620.jpg]], а потому являются корнями рационального уравнения с переменной t.<br>Но [[Image:Al621.jpg]] значит, либо [[Image:Al622.jpg]] откуда находим, что х = 2у, либо [[Image:Al623.jpg]]<br>Таким образом, с помощью метода введения новой переменной нам удалось как бы «расслоить» первое уравнение системы, достаточно сложное по виду, на два более простых уравнения:<br>х = 2 у; у — 2х.<br> |
| | | |
- | Что же дальше? А дальше каждое из двух полученных простых уравнений нужно поочередно рассмотреть в системе с уравнением х<sup>2</sup> - у<sup>2</sup> = 3, о котором мы пока не вспоминали. Иными словами, задача сводится к решению двух систем уравнений: | + | Что же дальше? А дальше каждое из двух полученных простых уравнений нужно поочередно рассмотреть в системе с уравнением х<sup>2</sup> - у<sup>2</sup> = 3, о котором мы пока не вспоминали. Иными словами, задача сводится к решению двух систем уравнений: |
| | | |
- | [[Image:al624.jpg]] | + | [[Image:Al624.jpg]] |
| | | |
- | Надо найти решения первой системы, второй системы и все полученные пары значений включить в ответ. Решим первую систему уравнений: | + | Надо найти решения первой системы, второй системы и все полученные пары значений включить в ответ. Решим первую систему уравнений: |
| | | |
- | [[Image:al625.jpg]]<br>Воспользуемся методом подстановки, тем более что здесь для него все готово: подставим выражение 2у вместо х во второе уравнение системы. Получим [[Image:al626.jpg]]<br>Так как х = 2у, то находим соответственно х<sub>1</sub> = 2, х<sub>2</sub> = 2. Тем самым получены два решения заданной системы: (2; 1) и (-2; -1). Решим вторую систему уравнений: [[Image:al627.jpg]]<br>Снова воспользуемся методом подстановки: подставим выражение 2х вместо у во второе уравнение системы. Получим [[Image:al628.jpg]]<br>Это уравнение не имеет корней, значит, и система уравнений не имеет решений. Таким образом, в ответ надо включить только решения первой системы.<br>'''Ответ:''' (2; 1); (-2;-1).<br>Метод введения новых переменных при решении систем двух уравнений с двумя переменными применяется в двух вариантах. '''''Первый вариант:''''' вводится одна новая переменная и используется только в одном уравнении системы. Именно так обстояло дело в примере 3.'''''Второй вариант:''''' вводятся две новые переменные и используются одновременно в обоих уравнениях системы. Так будет обстоять дело в примере 4.<br>'''Пример 4.''' Решить систему уравнений 2 3<br>х-3у 8<br>2 х + у 9<br>= 2, = 1.<br>х-3у 2 х + у Решение. Введем две новые переменные: а =<br>6 =<br>Учтем, что тогда<br>8<br>х-3 у<br>- 4а,<br>= 36.<br>2х + у ' х-Зу " ' х ~ Зу<br>Это позволит переписать заданную систему в значительно более простом виде, но относительно новых переменных а и Ь:<br>\а + Ь = 2,<br>[4а - 36 = 1.<br>Применим для решения этой системы метод алгебраического сложения:<br>ГЗа + ЗЬ = 6, [4а- 36 = 1.<br>7а =7; а=1.<br>Так как а = 1, то из уравнения а + 6 = 2 находим: 1 + 6 = 2; 6=1. Таким образом, относительно переменных а и 6 мы получили одно решение:<br>[а = 1, [6 = 1.<br>Возвращаясь к переменным х и у, получаем систему уравнений<br>2<br>х-3у 3<br>2х + у<br>= 1, = 1,<br>т.е.<br>х-3 у = 2, 2х + у = 3.<br>52<br>2.6. I<br>СИСТЕМЫ УРАВНЕНИЙ<br>Применим для решения этой системы метод алгебраического сложения:<br>+ Г*-3 у-2, [6х + 3у = 9.<br>7х = 11; 11<br>11<br>И 7 22<br>Так как х = у, то из уравнения 2* + у = 3 находим: у~3-2х =<br>= 3-2-у=3- ?<br>Таким образом, относительно перемен-<br>ных хиу мы получили одно решение:<br>11<br>1<br><br>Ответ:<br>Г11 1<br>7 ' 7<br>обратите внимание<br>равносильность систем уравнений<br>Завершим этот параграф кратким, но достаточно серьезным теоретическим разговором. Вы уже накопили некоторый опыт в решении различных уравнений: линейных, квадратных, рациональных, иррациональных. Вы знаете, что основная идея решения уравнения состоит в постепенном переходе от одного уравнения к другому, более простому, но равносильному заданному. В предыдущем параграфе мы ввели понятие равносильности для уравнений с двумя переменными. Используют это понятие и для систем уравнений.<br>Определение. Две системы уравнений с переменными х и у называют равносильными, если они имеют одни и те же решения или если обе системы не имеют решений.<br>Все три метода (подстановки, алгебраического сложения и введения новых переменных), которые<br>53<br> | + | [[Image:Al625.jpg]]<br>Воспользуемся методом подстановки, тем более что здесь для него все готово: подставим выражение 2у вместо х во второе уравнение системы. Получим [[Image:Al626.jpg]]<br>Так как х = 2у, то находим соответственно х<sub>1</sub> = 2, х<sub>2</sub> = 2. Тем самым получены два решения заданной системы: (2; 1) и (-2; -1). Решим вторую систему уравнений: [[Image:Al627.jpg]]<br>Снова воспользуемся методом подстановки: подставим выражение 2х вместо у во второе уравнение системы. Получим [[Image:Al628.jpg]]<br>Это уравнение не имеет корней, значит, и система уравнений не имеет решений. Таким образом, в ответ надо включить только решения первой системы.<br>'''Ответ:''' (2; 1); (-2;-1).<br>Метод введения новых переменных при решении систем двух уравнений с двумя переменными применяется в двух вариантах. '''''Первый вариант:''''' вводится одна новая переменная и используется только в одном уравнении системы. Именно так обстояло дело в примере 3.'''''Второй вариант:''''' вводятся две новые переменные и используются одновременно в обоих уравнениях системы. Так будет обстоять дело в примере 4.<br>'''Пример 4.''' Решить систему уравнений [[Image:al629.jpg]] |
| | | |
- | 2.6. I<br>СИСТЕМЫ УРАВНЕНИЙ<br>мы обсудили в этом параграфе, абсолютно корректны с точки зрения равносильности. Иными словами, используя эти методы, мы заменяем одну систему уравнений другой, более простой, но равносильной первоначальной системе.<br>
| + | '''Решение.''' Введем две новые переменные: [[Image:al630.jpg]] Учтем, что тогда [[Image:al631.jpg]] |
| + | |
| + | Это позволит переписать заданную систему в значительно более простом виде, но относительно новых переменных а и b: |
| + | |
| + | [[Image:al632.jpg]]<br>Применим для решения этой системы метод алгебраического сложения: |
| + | |
| + | [[Image:al633.jpg]]<br>Так как а = 1, то из уравнения а + 6 = 2 находим: 1 + 6 = 2; 6=1. Таким образом, относительно переменных а и b мы получили одно решение: |
| + | |
| + | [[Image:al634.jpg]]<br>Возвращаясь к переменным х и у, получаем систему уравнений |
| + | |
| + | [[Image:al635.jpg]]<br>Применим для решения этой системы метод алгебраического сложения: [[Image:al636.jpg]]<br>Так как [[Image:al637.jpg]] то из уравнения 2x + y = 3 находим: [[Image:al638.jpg]]<br>Таким образом, относительно переменных хиу мы получили одно решение: [[Image:al639.jpg]]<br>'''Ответ:''' [[Image:al640.jpg]]<br>Завершим этот параграф кратким, но достаточно серьезным теоретическим разговором. Вы уже накопили некоторый опыт в решении различных уравнений: линейных, квадратных, рациональных, иррациональных. Вы знаете, что основная идея решения уравнения состоит в постепенном переходе от одного уравнения к другому, более простому, но равносильному заданному. В предыдущем параграфе мы ввели понятие равносильности для уравнений с двумя переменными. Используют это понятие и для систем уравнений.<br>'''Определение.''' Две системы уравнений с переменными х и у называют равносильными, если они имеют одни и те же решения или если обе системы не имеют решений.<br>Все три метода (подстановки, алгебраического сложения и введения новых переменных), которые мы обсудили в этом параграфе, абсолютно корректны с точки зрения равносильности. Иными словами, используя эти методы, мы заменяем одну систему уравнений другой, более простой, но равносильной первоначальной системе.<br> |
| | | |
| <br> | | <br> |
Версия 07:35, 29 июня 2010
Гипермаркет знаний>>Математика>>Математика 9 класс>>Математика: Методы решения систем уравнений
МЕТОДЫ РЕШЕНИЯ СИСТЕМ УРАВНЕНИЙ
В этом параграфе мы обсудим три метода решения систем уравнений, более надежные, чем графический метод, который рассмотрели в предыдущем параграфе. 1. Метод подстановки Этот метод мы применяли в 7-м классе для решения систем линейных уравнений. Тот алгоритм, который был выработан в 7-м классе, вполне пригоден для решения систем любых двух уравнений (не обязательно линейных) с двумя переменными х и у (разумеется, переменные могут быть обозначены и другими буквами, что не имеет значения). Фактически этим алгоритмом мы воспользовались в предыдущем параграфе, когда задача о двузначном числе привела к математической модели, представляющей собой систему уравнений. Эту систему уравнений мы решили выше методом подстановки (см. пример 1 из § 4). Алгоритм использования метода подстановки при решении системы двух уравнений с двумя переменными х, у. 1. Выразить у через х из одного уравнения системы. 2. Подставить полученное выражение вместо у в другое уравнение системы. 3. Решить полученное уравнение относительно х. 4. Подставить поочередно каждый из найденных на третьем шаге корней уравнения вместо х в выражение у через х, полученное на первом шаге. 5. Записать ответ в виде пар значений (х; у), которые были найдены соответственно на третьем и четвертом шаге. Переменные х и у, разумеется, равноправны, поэтому с таким же успехом мы можем на первом шаге алгоритма выразить не у через х, а х через у из одного уравнения. Обычно выбирают то уравнение, которое представляется более простым, и выражают ту переменную из него, для которой эта процедура представляется более простой. Пример 1. Решить систему уравнений Р е ш е н и е. 1) Выразим х через у из первого уравнения системы: х = 5 - 3у. 2) Подставим полученное выражение вместо х во второе уравнение системы: (5 - 3у) у — 2. 3) Решим полученное уравнение: 4) Подставим поочередно каждое из найденных значений у в формулу х = 5 - Зу. Если то 5) Пары (2; 1) и решения заданной системы уравнений.
О тв е т: (2; 1); 2. Метод алгебраического сложения Этот метод, как и метод подстановки, знаком вам из курса алгебры 7-го класса, где он применялся для решения систем линейных уравнений. Суть метода напомним на следующем примере. Пример 2. Решить систему уравнений Решение. Умножим все члены первого уравнения системы на 3, а второе уравнение оставим без изменения: Вычтем второе уравнение системы из ее первого уравнения:
В результате алгебраического сложения двух уравнений исходной системы получилось уравнение, более простое, чем первое и второе уравнения заданной системы. Этим более простым уравнением мы имеем право заменить любое уравнение заданной системы, например второе. Тогда заданная система уравнений заменится более простой системой: Эту систему можно решить методом подстановки. Из второго уравнения находим Подставив это выражение вместо у в первое уравнение системы, получим
Осталось подставить найденные значения х в формулу
Если х = 2, то Таким образом, мы нашли два решения системы:
Ответ:
3. Метод введения новых переменных С методом введения новой переменной при решении рациональных уравнений с одной переменной вы познакомились в курсе алгебры 8-го класса. Суть этого метода при решении систем уравнений та же самая, но с технической точки зрения имеются некоторые особенности, которые мы и обсудим в следующих примерах. Пример 3. Решить систему уравнений
Решение. Введем новую переменную Тогда первое уравнение системы можно будет переписать в более простом виде: Решим это уравнение относительно переменной t:
Оба эти значения удовлетворяют условию , а потому являются корнями рационального уравнения с переменной t. Но значит, либо откуда находим, что х = 2у, либо Таким образом, с помощью метода введения новой переменной нам удалось как бы «расслоить» первое уравнение системы, достаточно сложное по виду, на два более простых уравнения: х = 2 у; у — 2х.
Что же дальше? А дальше каждое из двух полученных простых уравнений нужно поочередно рассмотреть в системе с уравнением х2 - у2 = 3, о котором мы пока не вспоминали. Иными словами, задача сводится к решению двух систем уравнений:
Надо найти решения первой системы, второй системы и все полученные пары значений включить в ответ. Решим первую систему уравнений:
Воспользуемся методом подстановки, тем более что здесь для него все готово: подставим выражение 2у вместо х во второе уравнение системы. Получим Так как х = 2у, то находим соответственно х1 = 2, х2 = 2. Тем самым получены два решения заданной системы: (2; 1) и (-2; -1). Решим вторую систему уравнений: Снова воспользуемся методом подстановки: подставим выражение 2х вместо у во второе уравнение системы. Получим Это уравнение не имеет корней, значит, и система уравнений не имеет решений. Таким образом, в ответ надо включить только решения первой системы. Ответ: (2; 1); (-2;-1). Метод введения новых переменных при решении систем двух уравнений с двумя переменными применяется в двух вариантах. Первый вариант: вводится одна новая переменная и используется только в одном уравнении системы. Именно так обстояло дело в примере 3.Второй вариант: вводятся две новые переменные и используются одновременно в обоих уравнениях системы. Так будет обстоять дело в примере 4. Пример 4. Решить систему уравнений
Решение. Введем две новые переменные: Учтем, что тогда
Это позволит переписать заданную систему в значительно более простом виде, но относительно новых переменных а и b:
Применим для решения этой системы метод алгебраического сложения:
Так как а = 1, то из уравнения а + 6 = 2 находим: 1 + 6 = 2; 6=1. Таким образом, относительно переменных а и b мы получили одно решение:
Возвращаясь к переменным х и у, получаем систему уравнений
Применим для решения этой системы метод алгебраического сложения: Так как то из уравнения 2x + y = 3 находим: Таким образом, относительно переменных хиу мы получили одно решение: Ответ: Завершим этот параграф кратким, но достаточно серьезным теоретическим разговором. Вы уже накопили некоторый опыт в решении различных уравнений: линейных, квадратных, рациональных, иррациональных. Вы знаете, что основная идея решения уравнения состоит в постепенном переходе от одного уравнения к другому, более простому, но равносильному заданному. В предыдущем параграфе мы ввели понятие равносильности для уравнений с двумя переменными. Используют это понятие и для систем уравнений. Определение. Две системы уравнений с переменными х и у называют равносильными, если они имеют одни и те же решения или если обе системы не имеют решений. Все три метода (подстановки, алгебраического сложения и введения новых переменных), которые мы обсудили в этом параграфе, абсолютно корректны с точки зрения равносильности. Иными словами, используя эти методы, мы заменяем одну систему уравнений другой, более простой, но равносильной первоначальной системе.
А.Г. Мордкович Алгебра 9 класс
Материалы по математике онлайн, задачи и ответы по классам, планы конспектов уроков по математике скачать
Содержание урока
конспект урока
опорный каркас
презентация урока
акселеративные методы
интерактивные технологии
Практика
задачи и упражнения
самопроверка
практикумы, тренинги, кейсы, квесты
домашние задания
дискуссионные вопросы
риторические вопросы от учеников
Иллюстрации
аудио-, видеоклипы и мультимедиа
фотографии, картинки
графики, таблицы, схемы
юмор, анекдоты, приколы, комиксы
притчи, поговорки, кроссворды, цитаты
Дополнения
рефераты
статьи
фишки для любознательных
шпаргалки
учебники основные и дополнительные
словарь терминов
прочие
Совершенствование учебников и уроков
исправление ошибок в учебнике
обновление фрагмента в учебнике
элементы новаторства на уроке
замена устаревших знаний новыми
Только для учителей
идеальные уроки
календарный план на год
методические рекомендации
программы
обсуждения
Интегрированные уроки
Если у вас есть исправления или предложения к данному уроку, напишите нам.
Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум.
|