KNOWLEDGE HYPERMARKET


Построение некоторых правильных многоугольников
(Создана новая страница размером <metakeywords>Гипермаркет Знаний - первый в мире!, Гипермаркет Знаний, Математика, ...)
Строка 1: Строка 1:
-
<metakeywords>Гипермаркет Знаний - первый в мире!, Гипермаркет Знаний, Математика, 9 класс, Алгебра, урок, на Тему, Построение некоторых правильных многоугольников</metakeywords>  
+
<metakeywords>Гипермаркет Знаний - первый в мире!, Гипермаркет Знаний, Математика, 9 класс, Геометрия, урок, на Тему, Построение некоторых правильных многоугольников</metakeywords>  
'''[[Гипермаркет знаний - первый в мире!|Гипермаркет знаний]]&gt;&gt;[[Математика|Математика]]&gt;&gt;[[Математика 9 класс|Математика 9 класс]]&gt;&gt;Математика:Построение некоторых правильных многоугольников'''  
'''[[Гипермаркет знаний - первый в мире!|Гипермаркет знаний]]&gt;&gt;[[Математика|Математика]]&gt;&gt;[[Математика 9 класс|Математика 9 класс]]&gt;&gt;Математика:Построение некоторых правильных многоугольников'''  

Версия 15:43, 29 июня 2010

Гипермаркет знаний>>Математика>>Математика 9 класс>>Математика:Построение некоторых правильных многоугольников


                                                ПОСТРОЕНИЕ НЕКОТОРЫХ ПРАВИЛЬНЫХ МНОГОУГОЛЬНИКОВ


Для построения правильного многоугольника, вписанного в окружность, достаточно построить его центральный угол.
У правильного шестиугольника такой угол равен 24-06-83.jpg
Поэтому для построения правильного шестиугольника одну вершину (A1) на окружности берем произвольно. Из нее как из центра радиусом, равным радиусу окружности, делаем засечку и получаем вершину Аг (рис. 282). Затем аналогично строим остальные вершины А3, А4, А5, A6 и соединяем их отрезками.

Для построения правильного вписанного треугольника достаточно соединить через одну вершины правильного вписанного шестиугольника (рис. 283).


24-06-84.jpg
 
Для построения правильного вписанного четырехугольника (квадрата) достаточно провести через центр окружности перпендикулярные прямые. Они пересекут окружность в вершинах квадрата (рис. 284).


24-06-85.jpg
 
Для построения правильного описанного многоугольника достаточно провести касательные к окружности в вершинах правильного вписанного многоугольника. Касательные, проходящие через вершины правильного вписанного многоугольника, пересекаются в вершинах правильного описанного многоугольника (рис. 285).

Если в окружность вписан правильный n-угольник, то легко построить правильный вписанный 2n-угольник. На рисунке 286 показано построение правильного восьмиугольника.


24-06-86.jpg
 


А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений

Учебники по всему предметам скачать, разработка планов уроков для учителей, Математика для 9 класса онлайн


Содержание урока
1236084776 kr.jpg конспект урока                       
1236084776 kr.jpg опорный каркас  
1236084776 kr.jpg презентация урока
1236084776 kr.jpg акселеративные методы 
1236084776 kr.jpg интерактивные технологии 

Практика
1236084776 kr.jpg задачи и упражнения 
1236084776 kr.jpg самопроверка
1236084776 kr.jpg практикумы, тренинги, кейсы, квесты
1236084776 kr.jpg домашние задания
1236084776 kr.jpg дискуссионные вопросы
1236084776 kr.jpg риторические вопросы от учеников
 
Иллюстрации
1236084776 kr.jpg аудио-, видеоклипы и мультимедиа 
1236084776 kr.jpg фотографии, картинки 
1236084776 kr.jpg графики, таблицы, схемы
1236084776 kr.jpg юмор, анекдоты, приколы, комиксы
1236084776 kr.jpg притчи, поговорки, кроссворды, цитаты

Дополнения
1236084776 kr.jpg рефераты
1236084776 kr.jpg статьи 
1236084776 kr.jpg фишки для любознательных 
1236084776 kr.jpg шпаргалки 
1236084776 kr.jpg учебники основные и дополнительные
1236084776 kr.jpg словарь терминов                          
1236084776 kr.jpg прочие 

Совершенствование учебников и уроков
1236084776 kr.jpg исправление ошибок в учебнике
1236084776 kr.jpg обновление фрагмента в учебнике 
1236084776 kr.jpg элементы новаторства на уроке 
1236084776 kr.jpg замена устаревших знаний новыми 
 
Только для учителей
1236084776 kr.jpg идеальные уроки 
1236084776 kr.jpg календарный план на год  
1236084776 kr.jpg методические рекомендации  
1236084776 kr.jpg программы
1236084776 kr.jpg обсуждения


Интегрированные уроки


Если у вас есть исправления или предложения к данному уроку, напишите нам.

Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум.