| 
 
 
			
			
			
			
		
		|   |  |  | Строка 1: | Строка 1: |  |  | '''[[Гипермаркет знаний - первый в мире!|Гипермаркет знаний]]>>[[Физика и астрономия|Физика и астрономия]]>>[[Физика 10 класс|Физика 10 класс]]>>Физика: Внутренняя энергия'''   |  | '''[[Гипермаркет знаний - первый в мире!|Гипермаркет знаний]]>>[[Физика и астрономия|Физика и астрономия]]>>[[Физика 10 класс|Физика 10 класс]]>>Физика: Внутренняя энергия'''   |  |  |  |  |  |  |  | + | <br>  |  |  |  |  |  |  |  | + | <metakeywords>Физика, 10 класс, Внутренняя энергия</metakeywords>  |  |  |  |  |  |  | - | <metakeywords>Физика, 10 класс, Внутренняя энергия</metakeywords>
 | + |    Термодинамика была создана в середине XIX в. после открытия закона сохранения энергии. В ее основе лежит понятие ''внутренняя энергия''. С него мы и начнем. Предварительно остановимся на вопросе о том, какая связь существует между термодинамикой и молекулярно-кинетической теорией.<br>   '''Термодинамика и статистическая механика.''' Первой научной теорией тепловых процессов была не молекулярно-кинетическая теория, а термодинамика. Она возникла при изучении оптимальных условий использования теплоты для совершения работы. Это произошло в середине XIX в., задолго до того, как молекулярно-кинетическая теория получила всеобщее признание.<br>   Сейчас в науке и технике при изучении тепловых явлений используются как термодинамика, так и молекулярно-кинетическая теория. В теоретической физике молекулярно-кинетическую теорию называют ''статистической механикой''. Термодинамика и статистическая механика изучают различными методами одни и те же явления и взаимно дополняют друг друга.<br>   ''Главное содержание термодинамики состоит в двух основных ее законах, касающихся поведения энергии.'' Эти законы установлены опытным путем. Они справедливы для всех веществ независимо от их внутреннего строения.<br>   Статистическая механика более глубокая и точная наука, чем термодинамика, но и более сложная. К ней прибегают в тех случаях, когда простые соотношения термодинамики оказываются недостаточными для объяснения наблюдаемых явлений.<br>   '''Внутренняя энергия в молекулярно-кинетической теории.''' В середине XIX в. было доказано, что наряду с механической энергией макроскопические тела обладают еще и энергией, заключенной внутри самих тел. Эта ''внутренняя энергия'' входит в баланс энергетических превращений в природе. После открытия внутренней энергии был сформулирован ''закон сохранения и превращения энергии''.<br>   Что такое внутренняя энергия?<br>   Когда скользящая по льду шайба останавливается под действием силы трения, то ее механическая (кинетическая) энергия не просто исчезает, а передается беспорядочно движущимся молекулам льда и шайбы. Неровности поверхностей трущихся тел деформируются при движении, и интенсивность беспорядочного движения молекул возрастает. Оба тела нагреваются, что и означает увеличение их внутренней энергии.<br>   Нетрудно наблюдать и обратный переход внутренней энергии в механическую. Если нагревать воду в пробирке, закрытой пробкой, то внутренняя энергия воды и внутренняя энергия пара начнут возрастать. Давление пара увеличится настолько, что пробка будет выбита. Кинетическая энергия пробки увеличится за счет внутренней энергии пара. Расширяясь, водяной пар совершает работу и охлаждается. Его внутренняя энергия при этом уменьшается.<br>   С точки зрения молекулярно-кинетической теории '''внутренняя энергия макроскопического тела равна сумме кинетических энергий беспорядочного движения всех молекул (или атомов) тела и потенциальных энергий взаимодействия всех молекул друг с другом (но не с молекулами других тел).'''<br>   Вычислить внутреннюю энергию тела (или ее изменение), учитывая движение отдельных молекул и их положения относительно друг друга, практически невозможно из-за огромного числа молекул в макроскопических телах. Поэтому необходимо уметь определять значение внутренней энергии (или ее изменение) в зависимости от макроскопических параметров, которые можно непосредственно измерить.<br>   '''Внутренняя  энергия  идеального  одноатомного  газа.''' Наиболее прост по своим свойствам одноатомный газ, состоящий из отдельных атомов, а не молекул. Одноатомными являются инертные газы - гелий, неон, аргон и др. Вычислим внутреннюю энергию идеального одноатомного газа.<br>   Так как молекулы идеального газа не взаимодействуют друг с другом, то их потенциальная энергия равна нулю. Вся внутренняя энергия идеального газа определяется кинетической энергией беспорядочного движения его молекул.<br>   Для вычисления внутренней энергии идеального одноатомного газа массой ''m'' нужно умножить среднюю кинетическую энергию одного атома на число атомов . Учитывая, что ''kN<sub>A</sub>=R'', получим формулу для внутренней энергии идеального газа:<br>[[Image:a75-1.jpg|center]]   '''Внутренняя энергия идеального одноатомного газа прямо пропорциональна его абсолютной температуре.'''<br>   Она не зависит от объема и других макроскопических параметров системы.<br>   Изменение внутренней энергии идеального газа равно [[Image:a75-2.jpg]], т.е. определяется температурами начального и конечного состояний газа и не зависит от процесса.<br>   Если идеальный газ состоит из более сложных молекул, чем одноатомный, то его внутренняя энергия также пропорциональна абсолютной температуре, но коэффициент пропорциональности между ''U'' и ''T'' другой. Объясняется это тем, что сложные молекулы не только ''движутся поступательно, но и вращаются''. Внутренняя энергия таких газов равна сумме энергий поступательного и вращательного движений молекул.<br>   '''Зависимость внутренней энергии от макроскопических параметров.''' Мы установили, что внутренняя энергия идеального газа зависит от одного параметра - температуры. От объема внутренняя энергия идеального газа не зависит потому, что потенциальная энергия взаимодействия его молекул равна нулю.<br>   У реальных газов, жидкостей и твердых тел средняя потенциальная энергия взаимодействия молекул ''не равна нулю''. Правда, для газов она много меньше средней кинетической энергии молекул, но для твердых и жидких тел сравнима с ней.<br>   Средняя потенциальная энергия взаимодействия молекул газа зависит от объема вещества, так как при изменении объема меняется среднее расстояние между молекулами. Следовательно, ''внутренняя энергия реального газа в термодинамике в общем случае зависит, наряду с температурой T, и от объема V.''<br>   Значения макроскопических параметров (температуры ''T'', объема ''V'' и др.) однозначно определяют состояние тел. Поэтому они определяют и внутреннюю энергию макроскопических тел.<br>   Внутренняя энергия ''U'' макроскопических тел однозначно определяется параметрами, характеризующими состояние этих тел: температурой и объемом.<br>   В основе термодинамики лежит понятие внутренней энергии. Эта энергия зависит от макроскопических параметров: температуры и объема.<br>   Внутренняя энергия идеального газа прямо пропорциональна его абсолютной температуре.<br><br><br>   ???<br>   1. Приведите примеры превращения механической энергии во внутреннюю и обратно в технике и быту.<br>   2. От каких физических величин зависит внутренняя энергия тела?<br>   3. Чему равна внутренняя энергия идеального одноатомного газа?<br> |  |  |  |  |  |  |  |  |  |  |  |  | + | ''Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский, Физика 10 класс''  |  |  |  |  |  |  | - | ''Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский, Физика 10 класс''
 | + | <br> <sub>Материалы [[Физика и астрономия|по физике]], задание и ответы по классам, планы конспектов уроков [[Физика 10 класс|по физике для 10 класса]]</sub>   |  | - |   | + |  |  | - | <br> <sub>Материалы [[Физика_и_астрономия|по физике]], задание и ответы по классам, планы конспектов уроков [[Физика_10_класс|по физике для 10 класса]]</sub> | + |  |  |  |  |  |  |  |  |   '''<u>Содержание урока</u>''' |  |   '''<u>Содержание урока</u>''' |  
 Версия 16:47, 21 августа 2010Гипермаркет знаний>>Физика и астрономия>>Физика 10 класс>>Физика: Внутренняя энергия 
 
  
Термодинамика была создана в середине XIX в. после открытия закона сохранения энергии. В ее основе лежит понятие внутренняя энергия. С него мы и начнем. Предварительно остановимся на вопросе о том, какая связь существует между термодинамикой и молекулярно-кинетической теорией. Термодинамика и статистическая механика. Первой научной теорией тепловых процессов была не молекулярно-кинетическая теория, а термодинамика. Она возникла при изучении оптимальных условий использования теплоты для совершения работы. Это произошло в середине XIX в., задолго до того, как молекулярно-кинетическая теория получила всеобщее признание.
 Сейчас в науке и технике при изучении тепловых явлений используются как термодинамика, так и молекулярно-кинетическая теория. В теоретической физике молекулярно-кинетическую теорию называют статистической механикой. Термодинамика и статистическая механика изучают различными методами одни и те же явления и взаимно дополняют друг друга.
 Главное содержание термодинамики состоит в двух основных ее законах, касающихся поведения энергии. Эти законы установлены опытным путем. Они справедливы для всех веществ независимо от их внутреннего строения.
 Статистическая механика более глубокая и точная наука, чем термодинамика, но и более сложная. К ней прибегают в тех случаях, когда простые соотношения термодинамики оказываются недостаточными для объяснения наблюдаемых явлений.
 Внутренняя энергия в молекулярно-кинетической теории. В середине XIX в. было доказано, что наряду с механической энергией макроскопические тела обладают еще и энергией, заключенной внутри самих тел. Эта внутренняя энергия входит в баланс энергетических превращений в природе. После открытия внутренней энергии был сформулирован закон сохранения и превращения энергии.
 Что такое внутренняя энергия?
 Когда скользящая по льду шайба останавливается под действием силы трения, то ее механическая (кинетическая) энергия не просто исчезает, а передается беспорядочно движущимся молекулам льда и шайбы. Неровности поверхностей трущихся тел деформируются при движении, и интенсивность беспорядочного движения молекул возрастает. Оба тела нагреваются, что и означает увеличение их внутренней энергии.
 Нетрудно наблюдать и обратный переход внутренней энергии в механическую. Если нагревать воду в пробирке, закрытой пробкой, то внутренняя энергия воды и внутренняя энергия пара начнут возрастать. Давление пара увеличится настолько, что пробка будет выбита. Кинетическая энергия пробки увеличится за счет внутренней энергии пара. Расширяясь, водяной пар совершает работу и охлаждается. Его внутренняя энергия при этом уменьшается.
 С точки зрения молекулярно-кинетической теории внутренняя энергия макроскопического тела равна сумме кинетических энергий беспорядочного движения всех молекул (или атомов) тела и потенциальных энергий взаимодействия всех молекул друг с другом (но не с молекулами других тел).
 Вычислить внутреннюю энергию тела (или ее изменение), учитывая движение отдельных молекул и их положения относительно друг друга, практически невозможно из-за огромного числа молекул в макроскопических телах. Поэтому необходимо уметь определять значение внутренней энергии (или ее изменение) в зависимости от макроскопических параметров, которые можно непосредственно измерить.
 Внутренняя  энергия  идеального  одноатомного  газа. Наиболее прост по своим свойствам одноатомный газ, состоящий из отдельных атомов, а не молекул. Одноатомными являются инертные газы - гелий, неон, аргон и др. Вычислим внутреннюю энергию идеального одноатомного газа.
 Так как молекулы идеального газа не взаимодействуют друг с другом, то их потенциальная энергия равна нулю. Вся внутренняя энергия идеального газа определяется кинетической энергией беспорядочного движения его молекул.
 Для вычисления внутренней энергии идеального одноатомного газа массой m нужно умножить среднюю кинетическую энергию одного атома на число атомов . Учитывая, что kNA=R, получим формулу для внутренней энергии идеального газа:
 Внутренняя энергия идеального одноатомного газа прямо пропорциональна его абсолютной температуре.
 Она не зависит от объема и других макроскопических параметров системы.
 Изменение внутренней энергии идеального газа равно
  , т.е. определяется температурами начального и конечного состояний газа и не зависит от процесса. Если идеальный газ состоит из более сложных молекул, чем одноатомный, то его внутренняя энергия также пропорциональна абсолютной температуре, но коэффициент пропорциональности между U и T другой. Объясняется это тем, что сложные молекулы не только движутся поступательно, но и вращаются. Внутренняя энергия таких газов равна сумме энергий поступательного и вращательного движений молекул.
 Зависимость внутренней энергии от макроскопических параметров. Мы установили, что внутренняя энергия идеального газа зависит от одного параметра - температуры. От объема внутренняя энергия идеального газа не зависит потому, что потенциальная энергия взаимодействия его молекул равна нулю.
 У реальных газов, жидкостей и твердых тел средняя потенциальная энергия взаимодействия молекул не равна нулю. Правда, для газов она много меньше средней кинетической энергии молекул, но для твердых и жидких тел сравнима с ней.
 Средняя потенциальная энергия взаимодействия молекул газа зависит от объема вещества, так как при изменении объема меняется среднее расстояние между молекулами. Следовательно, внутренняя энергия реального газа в термодинамике в общем случае зависит, наряду с температурой T, и от объема V.
 Значения макроскопических параметров (температуры T, объема V и др.) однозначно определяют состояние тел. Поэтому они определяют и внутреннюю энергию макроскопических тел.
 Внутренняя энергия U макроскопических тел однозначно определяется параметрами, характеризующими состояние этих тел: температурой и объемом.
 В основе термодинамики лежит понятие внутренней энергии. Эта энергия зависит от макроскопических параметров: температуры и объема.
 Внутренняя энергия идеального газа прямо пропорциональна его абсолютной температуре.
 
 
 ???
 1. Приведите примеры превращения механической энергии во внутреннюю и обратно в технике и быту.
 2. От каких физических величин зависит внутренняя энергия тела?
 3. Чему равна внутренняя энергия идеального одноатомного газа?
 
 Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский, Физика 10 класс
 Материалы по физике, задание и ответы по классам, планы конспектов уроков по физике для 10 класса
 Содержание урока
 конспект урока  опорный каркас  презентация урока  акселеративные методы  интерактивные технологии 
Практика  задачи и упражнения  самопроверка  практикумы, тренинги, кейсы, квесты  домашние задания  дискуссионные вопросы  риторические вопросы от учеников
 
Иллюстрации  аудио-, видеоклипы и мультимедиа  фотографии, картинки  графики, таблицы, схемы  юмор, анекдоты, приколы, комиксы  притчи, поговорки, кроссворды, цитаты
Дополнения  рефераты  статьи  фишки для любознательных  шпаргалки  учебники основные и дополнительные  словарь терминов  прочие 
Совершенствование учебников и уроков  исправление ошибок в учебнике  обновление фрагмента в учебнике  элементы новаторства на уроке  замена устаревших знаний новыми 
 
Только для учителей  идеальные уроки  календарный план на год  методические рекомендации  программы  обсуждения
Интегрированные уроки Если у вас есть исправления или предложения к данному уроку, напишите нам. 
 Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум.
 
 
 
 |