Гипермаркет знаний>>Черчение 9 класс>>Черчение: Чертежи в системе прямоугольных проекций
Вы научились строить аксонометрические изображения, в основу которых положено параллельное проецирование. С помощью параллельного проецирования можно построить и другие изображения. Наиболее широко применяемыми в технике являются изображения, которые получены при прямоугольном проецировании на одну, две и три взаимно перпендикулярные плоскости проекций. Прямоугольное (ортогональное) проецирование точки на одну плоскость проекций.Рассмотрим самый простой случай — ортогональное проецирование точки (рис. 102). Перед плоскостью проекций поместим точку А и через нее проведем проецирующий луч ва под пря¬мым углом к плоскости проекций до пересечения с ней. Получим точку а — проекцию точки А.
Вывод: 1.Проекция точки на данную плоскость проекций есть точка. 2.Любая проецируемая точка имеет одну проекцию на выбранной плоскости проекций. 3.Проекция точки, лежащей на плоскости проекций, совпадает с самой точкой. Рассмотрим другой пример. На проецирующем луче разместим три точки: А, В, С (рис. 103). Их проекцией на плоскости Р является точка а, следовательно, а=Ь=c. По одной проекции нельзя определить, сколько объектов (точек) было на нее спроецировано. Вывод: 1. Любое количество точек, находящихся на одном проецирующем луче, проецируется в одну точку. 2. Для определения положения точки в пространстве одной ее проекции недостаточно.
Прямоугольное (ортогональное) проецирование точки на две плоскости проекций. Метод выполнения прямоугольных изображений на две взаимно перпендикулярные плоскости проекций впервые был разработан в 1799 году французским инженером и ученым Гаспаром Монжем, который считается основоположником начертательной геометрии — науки об изображении предметов и графических способах решения задач.
Для того чтобы получить две проекции точки, определяющих положение ее в пространстве, возьмем две взаимно перпендикулярные плоскости: V — фронтальную и Н — горизонтальную. Они будут пересекаться по прямой ох, которую называют осью проекций (рис. 104). Расположим точку А в двугранном углу. Используя метод прямоугольного проецирования, спроецируем ее на плоскости проекций, получим фронтальную (а') и горизонтальную (а) проекции точки А. Запись а' читается как «а штрих». Мы рассмотрели метод получения изображений точки А в системе двух плоскостей проекций. Чтобы решить обратную задачу: по изображениям точки найти ее положение в пространстве, необходимо от проекций а и а' провести проецирующие лучи перпендикулярно плоскостям проекций. Их пересечение определит положение точки А в пространстве.
Повернем плоскость Н вокруг оси ОХ на 90° вниз, до совмещения с плоскостью V, как показано на рис. 105. Получим ортогональные проекции точки. Обратите внимание на то, что проекции а и а' расположились на одной прямой а'а (рис. 105). Линия аа' называется линией проекционной связи.
Выводы: 1. Фронтальная и горизонтальная проекции точки всегда находятся на перпендикуляре к оси проекций ох, называемом линией проекционной связи. 2. Отрезок ааx — есть расстояние точки А до плоскости V. 3. Отрезок а'аx — расстояние точки А до плоскости Н. 4. Положение точки в пространстве определяют две ее проекции. Прямоугольное (ортогональное) проецирование точки на три плоскости проекций. Рассмотрим проецирование точки А на три взаимно перпендикулярные плоскости. К фронтальной и горизонтальной плоскостям проекций добавим третью — профильную плоскость проекций (W — «дубль вэ»), которую расположим перпендикулярно к плоскостям V и Н. Используя метод ортогонального проецирования, отобразим точку на трех плоскостях проекций. На профильной плоскости проекций получим изображение, которое будем называть профильной проекцией точки. Профильная проекция обозначается а", а читается как «а два штриха» (рис. 106). Плоскости проекций Н и W разворачивают до совмещения с плоскостью V, как показано на рис. 106, 107. Линии пересечения плоскостей являются осями проекций ох, оу, ох (рис. 106). Обратим внимание на то, что проекции а' и а, а' и а", а и а" лежат на прямых, называемых линиями проекционной связи (рис. 107). Такая зависимость в расположении проекций точки называется проекционной связью и при выполнении чертежей должна обязательно соблюдаться. Чертеж, состоящий из нескольких прямоугольных проекций, называется чертежом в системе прямоугольных проекций, или ортогональным чертежом.
Чертеж точки в системе прямоугольных проекций представлен на рис. 107, б.Построение третьей проекции точки по двум заданным. Если известны любые две проекции точки (например, а и а'), то можно найти третью проекцию (в нашем примере а"). Для этого можно использовать постоянную прямую чертежа, которая проводится под углом 45° (рис. 108). Через заданные проекции а и а' точки А проводим линии связи перпендикулярно к осям oz и оу. Точки пересечения линий связи дают искомую проекцию а". Перенос линии проекционной связи с оси оун на ось oyw осуществляется с помощью постоянной прямой I (рис. 108). Так с помощью вспомогательной прямой находится третья проекция а" точки А по двум заданным. Профильную проекцию а" точки А можно найти способом координирования, показанным на рис. 109. Из точки а' проведем линию проекционной связи к оси z, на ней отложим отрезок aza" = аха. Обратите внимание на то, что расстояние от оси z до профильной проекции точки равно расстоянию от оси х до ее горизонтальной проекции.
Содержание урока
конспект урока
опорный каркас
презентация урока
акселеративные методы
интерактивные технологии
Практика
задачи и упражнения
самопроверка
практикумы, тренинги, кейсы, квесты
домашние задания
дискуссионные вопросы
риторические вопросы от учеников
Иллюстрации
аудио-, видеоклипы и мультимедиа
фотографии, картинки
графики, таблицы, схемы
юмор, анекдоты, приколы, комиксы
притчи, поговорки, кроссворды, цитаты
Дополнения
рефераты
статьи
фишки для любознательных
шпаргалки
учебники основные и дополнительные
словарь терминов
прочие
Совершенствование учебников и уроков
исправление ошибок в учебнике
обновление фрагмента в учебнике
элементы новаторства на уроке
замена устаревших знаний новыми
Только для учителей
идеальные уроки
календарный план на год
методические рекомендации
программы
обсуждения
Интегрированные уроки
Если у вас есть исправления или предложения к данному уроку, напишите нам.
Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум.
|