Гипермаркет знаний>>География>>География 6 класс>> Строение и состав атмосферы. Солнечная радиация
Глава 5
Атмосфера Земли. Климатообразующие факторы
§ 1. Строение и состав атмосферы. Солнечная радиация
Атмосфера (от греч. atmos — пар) — внешняя воздушная оболочка Земли, состоящая из смеси различных газов: азота (78,08 %), кислорода (20,95 %), аргона (0,93 %) и углекислого газа (0,03 %). В состав воздуха также входят в небольшом количестве инертные газы: гелий, неон, ксенон, криптон, водород, озон и другие, которые в общей сложности составляют около 0,01 %. Кроме того, в воздухе содержатся водяные пары и некоторое количество пыли.
Атмосфера включает пять основных оболочек.
Нижний слой атмосферы — тропосфера — имеет толщину над полюсами Земли 8—10 км, в умеренных широтах — 10—12, а на экваторе — 16—18 км. В тропосфере сосредоточено около 80% массы атмосферы. Здесь находится почти весь водяной пар атмосферы, формируются осадки, и происходит горизонтальное и вертикальное перемещение воздуха.
Стратосфера распространяется от 8-16 до 45—55 км. Она включает около 20 % массы атмосферы, а водяной пар в ней почти отсутствует. В стратосфере имеется слой озона, который поглощает ультрафиолетовое излучение Солнца, защищая живые организмы на Земле.
Мезосфера — средний слой атмосферы, простирающийся до высоты 80 км. Плотность воздуха в этом слое в 200 раз меньше, чем у земной поверхности.
Ионосфера — верхний слой атмосферы, расположенный на высоте от 80 до 800-1000 км, состоит в основном из заряженных (ионизированных) атомов кислорода, заряженных молекул оксида азота и свободных электронов. В ионосфере возникают полярные сияния, наблюдаются резкие колебания магнитного поля.
Внешний слой атмосферы — экзосфера — начинается с высоты 800—1000 км от поверхности Земли. Этот слой еще называют сферой рассеяния, так как здесь частицы газов движутся с большой скоростью и могут ускользать в космическое пространство.
Солнечная радиация.
Солнечное излучение, солнечная радиация — единственный источник энергии для экзогенных процессов на земной поверхности и в атмосфере. Строго говоря, излучением называется процесс теплоотдачи одним и поглощения другим телом невидимых тепловых (инфракрасных) лучей. Чем выше температура тела, тем интенсивнее оно излучает. Поверхность Земли получает тепло за счет солнечного излучения, а ночью она остывает, испуская тепловые лучи в атмосферу. Солнечная радиация обычно выражается в калориях за единицу времени на единицу поверхности. Всего Земля получает от Солнца 2,4 е 1018 калорий лучистой энергии в 1 минуту.
Тепловой баланс системы Земля — атмосфера слагается из радиации, получаемой от Солнца (100 усл. ед.), радиации, отраженной в мировое пространство облаками, атмосферой и земной поверхностью (37 усл. ед.), из излучения поверхности Земли, уходящего в мировое пространство (8 усл. ед.) и излучения самой атмосферы (55 усл. ед.). Он отражает приход и расход потоков тепла в системе Земля — атмосфера и закон сохранения энергии.
Солнечные лучи отдают атмосфере непосредственно от '/12 до У6 части своей энергии. Эта энергия распределяется по всей толще атмосферы, а потому вызываемое ею нагревание воздуха относительно невелико. Солнце в основном нагревает поверхность Земли, от которой тепло передается атмосферному воздуху различными путями:
1) за счет конвекции, то есть вертикального перемещения нагревающегося у земной поверхности воздуха, взамен которого из вышележащего слоя опускается более холодный воздух, в свою очередь нагревающийся и поднимающийся вверх; 2) путем лучеиспускания; 3) за счет теплопроводности, то есть передачи тепла земной поверхности частицам соприкасающегося с ней атмосферного воздуха.
Именно так земная атмосфера получает большую часть тепла: в среднем в 3 раза больше, чем непосредственно от Солнца. Присутствие в атмосфере Земли углекислого газа и водяного пара не позволяет теплу, отраженному от земной поверхности, беспрепятственно уходить в космическое пространство. Они создают так называемый парниковый эффект, благодаря которому перепад температуры на Земле в течение суток не превышает 15 °С. Если бы парниковый эффект отсутствовал, земная поверхность остывала бы за ночь в среднем на 30—40 °С.
В прошлом количество водяных паров и углекислого газа могло меняться, что являлось непосредственной причиной изменения климата на нашей планете. В настоящее время в результате деятельности человека (сжигания огромного количества угля, нефти, древесины на предприятиях промышленности, в двигателях машин) в атмосфере повышается содержание углекислого газа, что ведет к усилению парникового эффекта и грозит глобальным изменением климата на Земле.
Распределение солнечной радиации по земной поверхности зависит от географической широты места. От полюсов к экватору радиация увеличивается, ибо чем больше угол, под которым солнечные лучи падают на поверхность Земли, тем больше тепла она получает на единицу площади. От широты места зависит и продолжительность дня в разные времена года, что также определяет величину солнечной радиации, поступающей на земную поверхность.
В средних и высоких широтах поступление солнечной радиации сильно меняется по временам года, что связано с большими изменениями полуденной высоты солнца и продолжительности дня.
Однако приход солнечной радиации на земную поверхность в определенном месте зависит не только от географической широты. Тепло и свет в атмосфере Земли отражаются, поглощаются, рассеиваются содержащимися в ней водяным паром, пылью, а также облаками. В атмосфере образуется рассеянная радиация (см. рис 20).
карт Рис, 20. Виды солнечной радиации
Суммарная радиация. Кроме прямых солнечных лучей (прямой радиации), к земной поверхности приходит и часть радиации, рассеянной в атмосфере. В районах, где часто бывает облачность, годовая величина рассеянной радиации больше величины прямой радиации. Приходящую на земную поверхность радиацию, прямую и рассеянную, называют суммарной радиацией. По поверхности планеты суммарная радиация распределяется не строго зонально: в разных местах под одной и той же широтой она бывает неодинакова.
Суммарная радиация частично поглощается земной поверхностью, нагревая ее, а частично отражается от нее.
карт Рис. 21. Отражение и поглощение солнечного излучения различными подстилающими поверхностями
Отраженная земной поверхностью радиация называется отраженной, а поглощенная земной поверхностью — поглощенной радиацией. Особенно сильно отражает радиацию снег (до 90 %), слабее — песок (35 %), трава (20 %), еще слабее — чернозем (4 %).Способность поверхности отражать солнечные лучи называется альбедо (рис. 21). Поглощенная радиация нагревает почву, растительный покров, верхние слои воды. На территории нашей страны годовая суммарная радиация изменяется от 60 ккал/см2 на севере до 160 ккал/см2 на юге.
Температура воздуха. Солнечные лучи, пройдя через атмосферу, падают на поверхность Земли и нагревают ее. Этим объясняется характерная особенность тропосферы: понижение температуры приземного слоя воздуха с высотой, ведь воздух нагревается от поверхности Земли.
Климат любой местности зависит, прежде всего, от ее географической широты. Чем ближе к экватору, тем больше угол падения солнечных лучей, тем сильнее нагревается земная поверхность и выше температура воздуха. Наблюдения за температурой воздуха выявили существование суточных и годовых ее колебаний. Разность между наибольшими и наименьшими значениями температуры воздуха в течение суток называется суточной амплитудой; в течение года — годовой амплитудой.
Амплитуда суточных колебаний зависит от ряда факторов:
1) Характера подстилающей поверхности: над океанами и морями она равна всего 1—2°, а над степями и пустынями достигает 15-20°. 2) Рельефа местности: вследствие опускания в долину холодного воздуха со склонов. 3) Облачности. С увеличением облачности суточная амплитуда уменьшается.
Годовые колебания температуры зависят, главным образом, от широты места и близости океана. В зоне экватора над морями годовая амплитуда равна всего 1°, над континентами — 5—10°. В более высоких широтах амплитуда возрастает. В районе Москвы она уже составляет 29°. Следует иметь в виду, что на одной и той же широте годовая амплитуда температур увеличивается с удалением от океана.
Тепловые пояса (температурные, термические) — широтные пояса Земли с определенными условиями температуры воздуха. Тропический (жаркий) пояс расположен между годовыми изотермами +20 °С; умеренные пояса Северного и Южного полушарий — между годовыми изотермами +20 °С и изотермой самого теплого месяца +10 °С. Полярные (холодные) пояса обоих полушарий расположены между изотермами самого теплого месяца +10 °С и 0 °С.
Максаковский В.П., Петрова Н.Н., Физическая и экономическая география мира. - М.:Айрис-пресс, 2010. - 368с.:ил.
Содержание урока
конспект урока
опорный каркас
презентация урока
акселеративные методы
интерактивные технологии
Практика
задачи и упражнения
самопроверка
практикумы, тренинги, кейсы, квесты
домашние задания
дискуссионные вопросы
риторические вопросы от учеников
Иллюстрации
аудио-, видеоклипы и мультимедиа
фотографии, картинки
графики, таблицы, схемы
юмор, анекдоты, приколы, комиксы
притчи, поговорки, кроссворды, цитаты
Дополнения
рефераты
статьи
фишки для любознательных
шпаргалки
учебники основные и дополнительные
словарь терминов
прочие
Совершенствование учебников и уроков
исправление ошибок в учебнике
обновление фрагмента в учебнике
элементы новаторства на уроке
замена устаревших знаний новыми
Только для учителей
идеальные уроки
календарный план на год
методические рекомендации
программы
обсуждения
Интегрированные уроки
Если у вас есть исправления или предложения к данному уроку, напишите нам.
Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум.
|