Гипермаркет знаний>>Информатика>>Информатика 11 класс>>Информатика: Корреляционные зависимости
Регрессионные математические модели строятся в тех случаях, когда известно, что зависимость между двумя факторами существует и требуется получить ее математическое описание. А сейчас мы рассмотрим задачи другого рода. Пусть важной характеристикой некоторой сложной системы является фактор А. На него могут оказывать влияние одновременно многие другие факторы: B, С, D и так далее. Мы рассмотрим два типа задач — требуется определить: 1) оказывает ли фактор В какое-либо заметное регулярное влияние на фактор А; 2) какие из факторов В, С, D и так далее оказывают наибольшее влияние на фактор А; В качестве примера сложной системы будем рассматривать школу. Пусть для первого типа задач фактором А является средняя успеваемость учащихся школы, фактором В — финансовые расходы школы на хозяйственные нужды: ремонт здания, обновление мебели, эстетическое оформление помещения и т. п. Здесь влияние фактора В на фактор А не очевидно. Наверное, гораздо сильнее на успеваемость влияют другие причины: уровень квалификации учителей, контингент учащихся, уровень технических средств обучения и другие. Специалисты по статистике знают, что, для того чтобы выявить зависимость от какого-то определенного фактора, нужно максимально исключить влияние других факторов. Проще говоря, собирая информацию из разных школ, нужно выбирать такие школы, в которых приблизительно одинаковый контингент учеников, квалификация учителей и пр., но хозяйственные расходы школ разные (у одних школ могут быть богатые спонсоры, у других — нет). Итак, пусть хозяйственные расходы школы выражаются количеством рублей, отнесенных к числу учеников в школе (руб/чел.), потраченных за определенный период времени (например, за последние 5 лет). Успеваемость же пусть оценивается средним баллам учеников школы по результатам окончания последнего учебного года. Еще раз обращаем ваше внимание на то, что в статистических расчетах обычно используются относительные и усредненные величины. Итоги сбора данных по 20 школам, введенные в электронную таблицу, представлены на рис. 2.16. На рис. 2.17 приведена точечная диаграмма, построенная по этим данным.
Зависимости между величинами, каждая из которых подвергается не контролируемому полностью разбросу, называются корреляционными зависимостями. Раздел математической статистики, который исследует такие зависимости, называется корреляционным анализом. Корреляционный анализ изучает усредненный закон поведения каждой из величин в зависимости от значений другой величины, а также меру такой зависимости. Оценку корреляции величин начинают с высказывания гипотезы о возможном характере зависимости между их значениями. Чаще всего допускают наличие линейной зависимости. В таком случае мерой корреляционной зависимости является величина, которая называется коэффициентом корреляции. Как и прежде, мы не будем писать формулы, по которым он вычисляется; их написать нетрудно, гораздо труднее понять, почему они именно такие. На данном этапе вам достаточно знать следующее: • коэффициент корреляции (обычно обозначаемый греческой буквой р) есть число, заключенное в диапазоне от -1 до +1; • если это число по модулю близко к 1, то имеет место сильная корреляция, если к 0, то слабая; • близость р к +1 означает, что возрастанию одного набора значений соответствует возрастание другого набора, близость к -1 означает обратное; • значение р легко найти с помощью Excel без всяких формул (разумеется, потому, что в Excel они встроены). В Excel функция вычисления коэффициента корреляции называется КОРРЕЛ и входит е группу статистических функций. Покажем, как ей воспользоваться. На том же листе Excel, где находится таблица, представленная на рис. 2.16, надо установить курсор на любую свободную ячейку и запустить функцию КОРРЕЛ. Она запросит два диапазона значений. Укажем В2:В21 и С2:С21. После их ввода выведется ответ: р = 0,500273843. Эта величина говорит о среднем уровне корреляции. Наличие зависимости между хозяйственными затратами школы и успеваемостью нетрудно понять. Ученики с удовольствием ходят в чистую, красивую, уютную школу, чувствуют там себя как дома и поэтому лучше учатся. В следующем примере проводится исследование по определению зависимости успеваемости учащихся старших классов от двух факторов: обеспеченности школьной библиотеки учебниками и обеспеченности школы компьютерами. И та и другая характеристика количественно выражаются в процентах от нормы. Нормой обеспеченности учебниками является их полный комплект, то есть такое количество, когда каждому ученику выдаются из библиотеки все нужные ему для учебы книги. Нормой обеспеченности компьютерами будем считать такое их количество, при котором на каждые четыре старшеклассника в школе приходится один компьютер. Предполагается, что компьютерами ученики пользуются не только на информатике, но и на других уроках, а также во внеурочное время. Рис.2.18. Сравнение двух корреляционных зависимостей
С помощью корреляционного анализа можно решить следующие задачи: определить, оказывает ли один фактор существенное влияние на другой фактор; из нескольких факторов выбрать наиболее существенный. Количественной мерой корреляции двух величин является коэффициент корреляции. Значение коэффициента корреляции лежит между -1 и +1. Чем ближе его значение по модулю к 1, тем корреляция (связь) сильнее. В MS Excel для определения коэффициента корреляции используется функция КОРРЕЛ из группы статистических функций. б) Что такое корреляционный анализ? в) Какие типы задач можно решать с помощью корреляционного анализа? г) Какая величина является количественной мерой корреляции? Какие значения она может принимать? 2. С помощью какого средствд табличного процессора можно вычислить коэффициент корреляции? 3. а) Для данных из таблицы, представленной на рис. 2.18. постройте две линейные регрессионные модели. 6) Для этих же данных вычислите коэффициент корреляции. Сравните с приведенными на рис. 2.18 результатами.
Семакин И.Г., Хеннер Е.К., Информатика и ИКТ, 11 Отослано читателями из интернет-сайтов
Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки
Если у вас есть исправления или предложения к данному уроку, напишите нам. Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум. |
Авторські права | Privacy Policy |FAQ | Партнери | Контакти | Кейс-уроки
© Автор системы образования 7W и Гипермаркета Знаний - Владимир Спиваковский
При использовании материалов ресурса
ссылка на edufuture.biz обязательна (для интернет ресурсов -
гиперссылка).
edufuture.biz 2008-© Все права защищены.
Сайт edufuture.biz является порталом, в котором не предусмотрены темы политики, наркомании, алкоголизма, курения и других "взрослых" тем.
Ждем Ваши замечания и предложения на email:
По вопросам рекламы и спонсорства пишите на email: