Гипермаркет знаний>>Математика>>Математика 10 класс>> Логарифмические уравнения
§ 51. Логарифмические уравнения
справедливо тогда и только тогда, когда 1=8, мы можем сформулировать следующее утверждение. На практике эту теорему применяют так: переходят от уравнения (1) к уравнению f(х) = g(х) (такой переход называют потенцированием), решают уравнение f(х)= g(х), а затем проверяют его корни по условиям f(х) >0, g(х) >0, определяющим область допустимых значений переменной (ОДЗ). Те корни уравнения f(х) = g(х), которые удовлетворяют этим условиям, являются корнями уравнения (1). Те корни уравнения f(х) =g(х), которые не удовлетворяют хотя бы одному из этих условий, объявляются посторонними корнями для уравнения (1). Пример 1. Решить уравнение: Решение.1) Потенцируя (т.е. освободившись от знаков логарифмов), получаем: 2) Проверим наиденные корни по условиям:
Ответ: х = -3.
Решение. 1) Сначала надо преобразовать уравнение к виду (1). Для этого воспользуемся правилом: «сумма логарифмов равна логарифму произведения». Оно позволяет заменить выражение log2(х + 4)+ log2(2x + 3) выражением log2(х + 4)(2x: + 3). Тогда заданное уравнение можно переписать в виде: 2) Потенцируя, получаем: 3) Проверим найденные корни по условиям: (обратите внимание: условия для проверки всегда определяют по заданному уравнению). Значение x = -1 удовлетворяет этой системе неравенств, а значение х = -5,5 не удовлетворяет (это посторонний корень). Замечание. Иногда удобнее использовать другой порядок ходов: сначала решить систему неравенств — в примере 2 решением системы неравенств будет интервал (-1,5, 0,5); это — область допустимых значений переменной (ОДЗ) или область определения уравнения. Затем найти корни x1 = -1, х2 = -5,5. И, наконец, сделать проверку найденных значений х, но уже не с помощью системы неравенств, а по найденной заранее области допустимых значений. В примере 2 значение x = -1 принадлежит интервалу (-1,5, 0,5), а значение x = -5,5 этому интервалу не принадлежит. Следовательно, х = -5,5 — посторонний корень, т.е. x = -1 — единственный корень заданного логарифмического уравнения. Пример 3. Решить уравнение: Решение. Так как то заданное уравнение можно переписать в виде
Это значение удовлетворяет условию (посмотрите: у записанного выше рационального относительно у уравнения переменная содержится в знаменателе, а потому следует проверить, не обращается ли знаменатель в 0 при найденном значении переменной у). Итак, у = 2. Но у = lg х, значит, нам осталось решить простейшее логарифмическое уравнение lg х = 2, откуда находим х = 100. Ответ: х = 100.
2)Методпотенцирования. Он основан на теореме, полученной в начале параграфа. Мы применили этот метод в примерах 1 и 2. 3) Метод введения новой переменной. Мы применили этот метод в примере 3. Завершая параграф, рассмотрим пример, в котором для решения уравнения используется еще один метод — метод логарифмирования, и пример решения системы логарифмических уравнений.
Решение. Возьмем от обеих частей уравнения логарифмы по основанию 5; зто — равносильное преобразование уравнения, поскольку обе его части принимают только положительные значения. Получим:
log5 x=2, log5 x=-1. Из первого уравнения находим х = 5', т.е. х = 25; из второго уравнения находим x =5 , т.е. Пример 5. Решить систему уравнений
Ответ: (4; 2).
А.Г. Мордкович Алгебра 10 класс
Видео по математике скачать, домашнее задание, учителям и школьникам на помощь онлайн Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки
Если у вас есть исправления или предложения к данному уроку, напишите нам. Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум. |
Авторські права | Privacy Policy |FAQ | Партнери | Контакти | Кейс-уроки
© Автор системы образования 7W и Гипермаркета Знаний - Владимир Спиваковский
При использовании материалов ресурса
ссылка на edufuture.biz обязательна (для интернет ресурсов -
гиперссылка).
edufuture.biz 2008-© Все права защищены.
Сайт edufuture.biz является порталом, в котором не предусмотрены темы политики, наркомании, алкоголизма, курения и других "взрослых" тем.
Ждем Ваши замечания и предложения на email:
По вопросам рекламы и спонсорства пишите на email: