KNOWLEDGE HYPERMARKET


Преобразование рациональных выражений

Гипермаркет знаний>>Математика>>Математика 8 класс>>Математика:Преобразование рациональных выражений

Преобразование рациональных выражений


Этот параграф подводит итог всему тому, что мы, начиная с 7-го класса, говорили о математическом языке, о математической символике, о числах, переменных, степенях, многочленах и алгебраических дробях. Но сначала совершим небольшой экскурс в прошлое.

Вспомните, как в младших классах обстояло дело с изучением чисел и числовых выражений.

Сначала вы изучали натуральные числа A, 2, 3, 4, 5, ...) и операции над ними (но, конечно, этому предшествовало знакомство с цифрами). Затем появились целые числа (0, 1, -1, 2, -2, 3, -3, ...) — к ним относяся все натуральные числа, число 0 и целые отрицательные числа. Затем вы изучали рациональные числа — к ним относятся все целые числа и все дроби, как положительные, так и отрицательные. Таким образом, ко всякому натуральному числу, например к числу 2, можно «приклеить» три «ярлыка»: число 2 — натуральное, целое, рациональное. И это правильно, просто третий ярлык — рациональное число — достаточно широк, второй ярлык — целое число — поконкретнее, первый ярлык — натуральное число — самый конкретный.

Ко всякому целому числу, например к числу - 2, можно приклеить два ярлыка — целое число, рациональное число.

А, скажем, к дроби 11-06-65.jpg можно приклеить только один ярлык — рациональное число.

Аналогично обстоит дело с алгебраическими выражениями: первый этап их изучения — числа, переменные, степени («цифры»); второй этап их изучения — одночлены («натуральные числа»); третий этап их изучения — многочлены («целые числа»); четвертый этап их изучения — алгебраические дроби
(«рациональные числа»). При этом каждый следующий этап как бы вбирает в себя предыдущий: так, числа, переменные, степени — частные случаи одночленов; одночлены — частные •случаи многочленов; многочлены — частные случаи алгебраических дробей. Между прочим, в алгебре используют иногда и такие термины: многочлен — целое выражение, алгебраическая дробь — дробное выражение (это лишь усиливает аналогию).

Продолжим упомянутую аналогию. Вы знаете, что любое числовое выражение после выполнения всех входящих в его состав арифметических действий принимает конкретное числовое значение — рациональное число (разумеется, оно может оказаться и натуральным числом, и целым числом, и дробью — это неважно). Точно так же любое алгебраическое выражение, составленное из чисел и переменных с помощью арифметических операций и возведения в натуральную степень, после выполнения преобразований принимает вид алгебраической дроби и опять-таки, в частности, может получиться не дробь, а многочлен или даже одночлен). Для таких выражений в алгебре используют термин рациональное выражение.

Пример. Доказать тождество

Тождество

Решение.
Доказать тождество — это значит установить, что при всех допустимых значениях переменных его левая и правая части представляют собой тождественно равные выражения. В алгебре тождества доказывают различными способами:

1) выполняют преобразования левой части и получают в итоге правую часть;

2) выполняют преобразования правой части и получают в итоге левую часть;

3) по отдельности преобразуют правую и левую части и получают и в первом и во втором случае одно и то же выражение;

4) составляют разность левой и правой частей и в результате ее преобразований получают нуль.

Какой способ выбрать — зависит от конкретного вида тождества, которое вам предлагается доказать. В данном примере целесообразно выбрать первый способ.

Для преобразования рациональных выражений принят тот же порядок действий, что и для преобразования числовых выражений. Это значит, что сначала выполняют действия в скобках, затем действия второй ступени (умножение, деление, возведение в степень), затем действия первой ступени (сложение, вычитание).

Выполним преобразования по действиям, опираясь на те правила, алгоритмы, что были выработаны в предыдущих параграфах.

Задание

Как видите, нам удалось преобразовать левую часть проверяемого тождества к виду правой части. Это значит, что тождество доказано. Однако напомним, что тождество справедливо лишь для допустимых значений переменных. Таковыми в данном примере являются любые значения а и b, кроме тех, которые обращают знаменатели дробей в нуль. Значит, допустимыми являются любые пары чисел (а; b), кроме тех, при которых выполняется хотя бы одно из равенств:

2а - b = 0, 2а + b = 0, b = 0.

Мордкович А. Г., Алгебра. 8 кл.: Учеб. для общеобразоват. учреждений.— 3-е изд., доработ. — М.: Мнемозина, 2001. — 223 с: ил.


Полный перечень тем по классам, календарный план согласно школьной программе по математике онлайн, видеоматериал по математике для 8 класса скачать


Содержание урока
1236084776 kr.jpg конспект урока                       
1236084776 kr.jpg опорный каркас  
1236084776 kr.jpg презентация урока
1236084776 kr.jpg акселеративные методы 
1236084776 kr.jpg интерактивные технологии 

Практика
1236084776 kr.jpg задачи и упражнения 
1236084776 kr.jpg самопроверка
1236084776 kr.jpg практикумы, тренинги, кейсы, квесты
1236084776 kr.jpg домашние задания
1236084776 kr.jpg дискуссионные вопросы
1236084776 kr.jpg риторические вопросы от учеников

Иллюстрации
1236084776 kr.jpg аудио-, видеоклипы и мультимедиа 
1236084776 kr.jpg фотографии, картинки 
1236084776 kr.jpg графики, таблицы, схемы
1236084776 kr.jpg юмор, анекдоты, приколы, комиксы
1236084776 kr.jpg притчи, поговорки, кроссворды, цитаты

Дополнения
1236084776 kr.jpg рефераты
1236084776 kr.jpg статьи 
1236084776 kr.jpg фишки для любознательных 
1236084776 kr.jpg шпаргалки 
1236084776 kr.jpg учебники основные и дополнительные
1236084776 kr.jpg словарь терминов                          
1236084776 kr.jpg прочие 

Совершенствование учебников и уроков
1236084776 kr.jpg исправление ошибок в учебнике
1236084776 kr.jpg обновление фрагмента в учебнике 
1236084776 kr.jpg элементы новаторства на уроке 
1236084776 kr.jpg замена устаревших знаний новыми 

Только для учителей
1236084776 kr.jpg идеальные уроки 
1236084776 kr.jpg календарный план на год  
1236084776 kr.jpg методические рекомендации  
1236084776 kr.jpg программы
1236084776 kr.jpg обсуждения


Интегрированные уроки


Если у вас есть исправления или предложения к данному уроку, напишите нам.

Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум.