| 
 
  
 Гипермаркет знаний>>Математика>>Математика 8 класс>>Математика: Теорема Виета) 
 Теорема Виета
 В этом параграфе мы познакомимся с любопытными соотношениями между корнями квадратного уравнения и его коэффициентами. Эти соотношения впервые обнаружил французский математик Франсуа Виет (1540—1603).
 Например, для уравнения Зx2 - 8x - 6 = 0, не находя его корней, можно, воспользовавшись теоремой Виета, сразу сказать, что сумма корней равна <img src="/images/6/60/14-06-48.jpg" _fck_mw_filename="14-06-48.jpg" alt="" />, а произведение корней равно <img src="/images/8/80/14-06-49.jpg" _fck_mw_filename="14-06-49.jpg" alt="" />
 т. е. - 2. А для уравнения х2 - 6х + 8 = 0 заключаем: сумма корней равна 6, произведение корней равно 8; между прочим, здесь нетрудно догадаться, чему равны корни: 4 и 2.
 Доказательство теоремы Виета. Корни х1 и х2 квадратного уравнения ах2 + bх + с = 0 находятся по формулам
 <img src="/images/9/9a/14-06-50.jpg" _fck_mw_filename="14-06-50.jpg" alt="" />
 где D = b2 — 4ас — дискриминант уравнения. Сложив эти корни,
 получим
 <img src="/images/9/95/14-06-51.jpg" _fck_mw_filename="14-06-51.jpg" alt="" />
 Теперь вычислим произведение корней х1 и х2 Имеем
 <img src="/images/d/df/14-06-52.jpg" _fck_mw_filename="14-06-52.jpg" alt="" />
 Второе соотношение доказано: <img src="/images/4/48/14-06-53.jpg" _fck_mw_filename="14-06-53.jpg" alt="" />
 Замечание. Теорема Виета справедлива и в том случае, когда квадратное уравнение имеет один корень (т. е. когда D = 0), просто в этом случае считают, что уравнение имеет два одинаковых корня, к которым и применяют указанные выше соотношения.
 Особенно простой вид принимают доказанные соотношения для приведенного квадратного уравнения х2 + рх + q = 0. В этом случае получаем:
 x1 = x2 = -p, x1x2 =qт.е. сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.
 С помощью теоремы Виета можно получить и другие соотношения между корнями и коэффициентами квадратного уравнения. Пусть, например, х1 и х2 — корни приведенного квадратного уравнения х2 + рх + q = 0. Тогда
 <img src="/images/4/4f/14-06-54.jpg" _fck_mw_filename="14-06-54.jpg" alt="" />
 Однако основное назначение теоремы Виета не в том, что она выражает некоторые соотношения между корнями и коэффициентами квадратного уравнения. Гораздо важнее то, что с помощью теоремы Виета выводится формула разложения квадратного трехчлена на множители, без которой мы в дальнейшем не обойдемся.
 
 <img src="/images/6/6c/14-06-55.jpg" _fck_mw_filename="14-06-55.jpg" alt="" />
 Доказательство. Имеем
 <img src="/images/3/33/14-06-56.jpg" _fck_mw_filename="14-06-56.jpg" alt="" />
 Пример 1. Разложить на множители квадратный трехчлен Зх2 - 10x + 3.
 Решение. Решив уравнение Зх2 - 10x + 3 = 0, найдем корни квадратного трехчлена Зх2 - 10x + 3: х1 = 3, х2 = <img src="/images/d/dd/14-06-57.jpg" _fck_mw_filename="14-06-57.jpg" alt="" />.
 Воспользовавшись теоремой 2, получим
 
 <img src="/images/3/3d/14-06-58.jpg" _fck_mw_filename="14-06-58.jpg" alt="" />
 Есть смысл вместо <img src="/images/7/7c/14-06-59.jpg" _fck_mw_filename="14-06-59.jpg" alt="" /> написать Зx - 1. Тогда окончательно получим Зх2 - 10x + 3 = (х - 3)(3х - 1).
 Заметим, что заданный квадратный трехчлен можно разложить на множители и без применения теоремы 2, использовав способ группировки:
 
 Зх2 - 10x + 3 = Зх2 - 9х - х + 3 = = Зх (х - 3) - (х - 3) = (х - 3) (Зx - 1).
 
 Но, как видите, при этом способе успех зависит от того, сумеем ли мы найти удачную группировку или нет, тогда как при первом способе успех гарантирован. Пример 1. Сократить дробь
 
 <img src="/images/0/00/14-06-60.jpg" _fck_mw_filename="14-06-60.jpg" alt="" />
 Решение. Из уравнения 2х2 + 5х + 2 = 0 находим х1 = - 2,
 
 <img src="/images/9/92/14-06-61.jpg" _fck_mw_filename="14-06-61.jpg" alt="" />
 Из уравнения х2 - 4х - 12 = 0 находим х1 = 6, х2 = -2. Поэтому
 х2- 4х - 12 = (х- 6) (х - (- 2)) = (х - 6) (х + 2).
 А теперь сократим заданную дробь:
 
 <img src="/images/4/45/14-06-62.jpg" _fck_mw_filename="14-06-62.jpg" alt="" />
 Пример 3. Разложить на множители выражения:
 а)x4 + 5x2+6;               б)2x+<img src="/images/8/8d/14-06-63.jpg" _fck_mw_filename="14-06-63.jpg" alt="" />-3
 Р е ш е н и е. а) Введем новую переменную у = х2. Это позволит переписать заданное выражение в виде квадратного трехчлена относительно переменной у, а именно в виде у2 + bу + 6.
 Решив уравнение у2 + bу + 6 = 0, найдем корни квадратного трехчлена у2 + 5у + 6: у1 = - 2, у2 = -3. Теперь воспользуемся теоремой 2; получим
 
 у2 + 5у + 6 = (у + 2) (у + 3). Осталось вспомнить, что у = x2 , т. е. вернуться к заданному выражению. Итак,
 x4 + 5х2+ 6 = (х2 + 2)(х2 + 3).
 б) Введем новую переменную у = <img src="/images/8/8d/14-06-63.jpg" _fck_mw_filename="14-06-63.jpg" alt="" />. Это позволит переписать заданное выражение в виде квадратного трехчлена относительно переменной у, а именно в виде 2у2 + у - 3. Решив уравнение
 2у2 + у - 3 = 0, найдем корни квадратного трехчлена 2у2 + у - 3:
 y1 = 1,    y2= <img src="/images/7/7a/14-06-64.jpg" _fck_mw_filename="14-06-64.jpg" alt="" />. Далее, используя теорему 2, получим:
 
 <img src="/images/6/64/14-06-65.jpg" _fck_mw_filename="14-06-65.jpg" alt="" />
 Осталось вспомнить, что у = , т. е. вернуться к заданному выражению. Итак,
 
 <img src="/images/4/4f/14-06-66.jpg" _fck_mw_filename="14-06-66.jpg" alt="" />
 В заключение параграфа — некоторые рассуждения, опятьтаки связанные с теоремой Виета, а точнее, с обратным утверждением:
 если числа х1, х2 таковы, что х1 + х2 = - р, x1x2 = q, то эти числа — корни уравнения
 С помощью этого утверждения можно решать многие квадратные уравнения устно, не пользуясь громоздкими формулами корней, а также составлять квадратные уравнения с заданными корнями. Приведем примеры.
 1) х2 - 11х + 24 = 0. Здесь x1 + х2 = 11, х1х2 = 24. Нетрудно догадаться, что х1 = 8, х2 = 3. 
 2) х2 + 11х + 30 = 0. Здесь x1 + х2 = -11,  х1х2 = 30. Нетрудно догадаться, что х1 = -5, х2 = -6. Обратите внимание: если свободный член уравнения — положительное число, то оба корня либо положительны, либо отрицательны; это важно учитывать при подборе корней.
 3) х2 + х - 12 = 0. Здесь x1 + х2 = -1, х1х2 = -12. Легко догадаться, что х1 = 3, х2 = -4. Обратите внимание: если свободный член уравнения — отрицательное число, то корни различны по знаку; это важно учитывать при подборе корней.
 4) 5х2 + 17x - 22 = 0. Нетрудно заметить, что х = 1 удовлетворяет уравнению, т.е. х1 = 1 — корень уравнения. Так как х1х2 = -<img src="/images/e/ee/14-06-67.jpg" _fck_mw_filename="14-06-67.jpg" alt="" />, а х1 = 1, то получаем, что х2 = -<img src="/images/e/ee/14-06-67.jpg" _fck_mw_filename="14-06-67.jpg" alt="" /> . 
 5) х2 - 293x + 2830 = 0. Здесь х1+ х2 = 293, х1х2 = 2830. Если обратить внимание на то, что 2830 = 283 • 10, а 293 = 283 + 10, то становится ясно, что х1 = 283, х2 = 10 (а теперь представьте, какие вычисления пришлось бы выполнить для решения этого квадратного уравнения с помощью стандартных формул). 
 6) Составим квадратное уравнение так, чтобы его корнями служили числа х1 = 8, х2 = - 4. Обычно в таких случаях составляют приведенное квадратное уравнение х2 + рх + q = 0. Имеем х1+ х2= -р, поэтому 8 - 4 = -р, т. е. р = -4. Далее, х1х2= q, т.е. 8«(-4) = q, откуда получаем q = -32. Итак, р = -4, q = -32, значит, искомое квадратное уравнение имеет вид х2-4х-32 = 0.
 Мордкович А. Г., Алгебра. 8 кл.: Учеб. для общеобразоват. учреждений.— 3-е изд., доработ. — М.: Мнемозина, 2001. — 223 с: ил.  
 
 онлайн библиотека с учебниками и книгами, планы конспектов уроков по математике, задания по математике 8 класса скачать 
 
 Содержание урока
 конспект урока  опорный каркас  презентация урока  акселеративные методы  интерактивные технологии 
Практика  задачи и упражнения  самопроверка  практикумы, тренинги, кейсы, квесты  домашние задания  дискуссионные вопросы  риторические вопросы от учеников
Иллюстрации  аудио-, видеоклипы и мультимедиа  фотографии, картинки  графики, таблицы, схемы  юмор, анекдоты, приколы, комиксы  притчи, поговорки, кроссворды, цитаты
Дополнения  рефераты  статьи  фишки для любознательных  шпаргалки  учебники основные и дополнительные  словарь терминов  прочие 
Совершенствование учебников и уроков  исправление ошибок в учебнике  обновление фрагмента в учебнике  элементы новаторства на уроке  замена устаревших знаний новыми 
Только для учителей  идеальные уроки  календарный план на год  методические рекомендации  программы  обсуждения
Интегрированные уроки 
 Если у вас есть исправления или предложения к данному уроку, напишите нам. 
 Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум.
 
 
 
 |