KNOWLEDGE HYPERMARKET


Еще одна формула корней квадратного уравнения

Гипермаркет Знаний - первый в мире!, Гипермаркет Знаний, Математика, 8 класс, Алгебра, урок, на Тему, Еще одна формула корней квадратного уравнения

<a href="Гипермаркет знаний - первый в мире!">Гипермаркет знаний</a>>><a href="Математика">Математика</a>>><a href="Математика 8 класс">Математика 8 класс</a>>>Математика:Еще одна формула корней квадратного уравнения



Еще одна формула корней квадратного уравнения


Мы с вами уже привыкли к тому, что корни квадратного уравнения ах2 + bх + с = 0 находятся по формуле

<img src="/images/1/10/14-06-37.jpg" _fck_mw_filename="14-06-37.jpg" alt="" />

(если, конечно, дискриминант D = b2 — 4ас — неотрицательное число; если же D < О, то приведенная формула не имеет смысла, а квадратное уравнение не имеет корней).
Но математики никогда не пройдут мимо возможности облегчить себе вычисления. Они обнаружили, что формулу (1) можно упростить в случае, когда коэффициент b имеет вид b = 2k, в частности, если Ъ есть четное число.
В самом деле, пусть у квадратного уравнения ах2 + Ьх + с = О
коэффициент Ъ имеет вид Ъ — 2k. Подставив в формулу (1) число 2k вместо b, получим:

<img src="/images/6/61/14-06-38.jpg" _fck_mw_filename="14-06-38.jpg" alt="" />

Итак, корни квадратного уравнения ах2 + + 2kx + с = О можно вычислять по формуле

<img src="/images/9/93/14-06-39.jpg" _fck_mw_filename="14-06-39.jpg" alt="" />
Сравните эту формулу с формулой (1). В чем ее преимущества?

Во-первых, в квадрат возводится не число b, а его половина <img src="/images/8/80/14-06-40.jpg" _fck_mw_filename="14-06-40.jpg" alt="" />

Во-вторых, вычитается из этого квадрата не 4ас, a просто ас.

В-третьих, в знаменателе содержится не 2а, а просто а. Как видите, по крайней мере в трех моментах мы облегчаем себе выкладки. Особенно приятно выглядит формула (2) для приведенного квадратного уравнения, т. е. для случая, когда а = 1. Тогда получаем

<img src="/images/0/07/14-06-41.jpg" _fck_mw_filename="14-06-41.jpg" alt="" />

Это — формула корней уравнения х2 + 2kx + с — 0.
Вернемся к предыдущему параграфу и еще раз решим некоторые из имеющихся там квадратных уравнений — для сравнения трудоемкости вычислений по старой формуле (формуле (1)) и по новой формуле (формуле(2) или (3)).
В примере 1 из § 22 получилось квадратное уравнение х2 + 10x - 7200 = 0.
Мы решали его так:

<img src="/images/9/95/14-06-42.jpg" _fck_mw_filename="14-06-42.jpg" alt="" />

А теперь решим то же квадратное уравнение по формуле (3), учитывая, что в данном случае b = 10, т. е. 2k = 10, k = 5. Имеем

<img src="/images/7/76/14-06-43.jpg" _fck_mw_filename="14-06-43.jpg" alt="" />

В примере 3 из § 22 было получено квадратное уравнение
х2 - 92х + 960 = 0.
Мы решали его так:

<img src="/images/b/b7/14-06-44.jpg" _fck_mw_filename="14-06-44.jpg" alt="" />

А теперь решим это квадратное уравнение по формуле (3), учитывая, что в данном случае b = - 92, т. е. 2k = - 92, k = - 46.
Имеем

<img src="/images/9/94/14-06-45.jpg" _fck_mw_filename="14-06-45.jpg" alt="" />

Думается, что преимущества новой формулы вы оценили.
В заключение параграфа рассмотрим еще одно квадратное уравнение, которое мы решали по старой формуле (см. пример 6 из § 20), а теперь решим по-новому. Речь идет об уравнении

<img src="/images/2/2d/14-06-46.jpg" _fck_mw_filename="14-06-46.jpg" alt="" />

Сравните этот вариант решения с тем, который был предложен в § 20. Согласитесь, что так работать проще.
Итак, если вам встретилось квадратное уравнение вида ах2 + 2kx + с = 0, то советуем пользоваться формулой (2) (или (3), в случае, когда а = 1), поскольку вычисления будут проще. Но если вы опасаетесь запутаться в обилии формул, то пользуйтесь привычной общей формулой корней квадратного уравнения.


Мордкович А. Г., Алгебра. 8 кл.: Учеб. для общеобразоват. учреждений.— 3-е изд., доработ. — М.: Мнемозина, 2001. — 223 с: ил.


онлайн библиотека с учебниками и книгами, планы конспектов уроков по математике, задания по математике 8 класса скачать


Содержание урока
1236084776 kr.jpg конспект урока                       
1236084776 kr.jpg опорный каркас  
1236084776 kr.jpg презентация урока
1236084776 kr.jpg акселеративные методы 
1236084776 kr.jpg интерактивные технологии 

Практика
1236084776 kr.jpg задачи и упражнения 
1236084776 kr.jpg самопроверка
1236084776 kr.jpg практикумы, тренинги, кейсы, квесты
1236084776 kr.jpg домашние задания
1236084776 kr.jpg дискуссионные вопросы
1236084776 kr.jpg риторические вопросы от учеников

Иллюстрации
1236084776 kr.jpg аудио-, видеоклипы и мультимедиа 
1236084776 kr.jpg фотографии, картинки 
1236084776 kr.jpg графики, таблицы, схемы
1236084776 kr.jpg юмор, анекдоты, приколы, комиксы
1236084776 kr.jpg притчи, поговорки, кроссворды, цитаты

Дополнения
1236084776 kr.jpg рефераты
1236084776 kr.jpg статьи 
1236084776 kr.jpg фишки для любознательных 
1236084776 kr.jpg шпаргалки 
1236084776 kr.jpg учебники основные и дополнительные
1236084776 kr.jpg словарь терминов                          
1236084776 kr.jpg прочие 

Совершенствование учебников и уроков
1236084776 kr.jpg исправление ошибок в учебнике
1236084776 kr.jpg обновление фрагмента в учебнике 
1236084776 kr.jpg элементы новаторства на уроке 
1236084776 kr.jpg замена устаревших знаний новыми 

Только для учителей
1236084776 kr.jpg идеальные уроки 
1236084776 kr.jpg календарный план на год  
1236084776 kr.jpg методические рекомендации  
1236084776 kr.jpg программы
1236084776 kr.jpg обсуждения


Интегрированные уроки


Если у вас есть исправления или предложения к данному уроку, напишите нам.

Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум.