Гіпермаркет Знань>>Фізика і астрономія>>Фізика 11 клас>> Фізика: Фотоелектричний ефект. Закони фотоефекту. Кванти світла. Рівняння фотоефекту
На чистому небосхилі класичної фізики було лише дві хмарки, які, однак, згодом викликали грозу. Це: 1) неузгодженість експериментальних результатів теплового випромінювання з теоретичним обґрунтуванням цих явищ; 2) неможливість пояснення деяких явищ мікросвіту, дослідження яких у той час активізувалися, з позицій класичних уявлень про будову речовини. Крім того, на початку XX ст. А. Ейнштейн створив теорію відносності, де дав універсальне тлумачення просторово-часових властивостей фізичного світу на підставі їх єдності й універсальності. Сучасна фізика зароджувалася на межі XIX і XX ст. Вона виникала на фундаменті класичної фізики, але переглянулаїї основи. Теорія відносності пояснювала фізичні явища з позицій єдності простору і часу. Квантова фізика запропонувала розглядати природу взаємодії з погляду її дискретності, квантування Наприкінці XIX — на початку XX ст. фізики отримали низку вагомих результатів, які спонукали їх переглянути основи класичної фізики і потребували іншого теоретичного обґрунтування та пояснення досліджених явищ. Це були досліди з вивчення залежності довжини хвилі випромінювання абсолютно чорного тіла від температури, виконані англійськими фізиками Дж. Релеєм і Дж. Джинсом; відкриття радіоактивності французьким ученим А. Беккерелем і спостереження А'-променів німецьким дослідником В. К. Рентгеном, названі згодом на його честь рентгенівськими; відкриття електрона англійським фізиком Дж. Дж. Томсоном і фундаментальні досліди щодо будови атома, виконані Е. Резерфордом. У 1900 р. німецький фізик Макс Планк, пояснюючи розподіл енергії теплового випромінювання, висунув гіпотезу, що енергія випромінюється не безперервно, а певними дискретними порціями — квантами. Він вважав, що енергія такого кванта пропорційна частоті випромінювання (є ~ v). Завдяки такому припущенню М. Планк отримав формулу розподілу енергії теплового випромінювання, яка узгоджувалася з експериментальними даними в усьому інтервалі температур — від низьких до високих. Увівши коефіцієнт пропорційності h, названий сталою Планка, можна обчислити квант енергії: Стала Планка — це фундаментальна фізична константа, що дорівнює h = 6,626176 · 10-34Дж · с. Гіпотеза М.Планка: теплове випромінювання здійснюється певними мінімальними порціями енергії — квантами. Квант енергії пропорційний частоті випромінювання: є = hv, де h — константа (стала Планка); v — частота випромінювання Так на межі XIX і XX ст. зародилася сучасна фізика, яка поглибила розуміння суті фізичного світу й усунула протиріччя, що існували в класичній фізиці. Сучасну фізику інколи називають квантовою, підкреслюючи тим самим дискретний характер опису фізичних взаємодій і руху мікрочастинок.
ФОТОЕФЕКТ. РІВНЯННЯ ФОТОЕФЕКТУ У 1887 році Г. Герц спостерігав явище, яке згодом стало поштовхом у розвитку квантових уявлень про природу світла. Під час опромінення ультрафіолетовим світлом негативно зарядженої пластинки відбувався сильніший електричний розряд, ніж за відсутності такого опромінення. Як з'ясувалося пізніше, це було проявом явища фотоефекту — виходу електронів з тіла в інше середовище або вакуум під дією електромагнітного випромінювання. Цей вид фотоефекту називають зовнішнім, або фотоелектронною емісією. Фотоефект є результатом трьох послідовних процесів: поглинання фотона, внаслідок чого енергія одного електрона стає більшою за середню; руху цього електрона до поверхні тіла; виходу його за межі тіла в інше середовище через поверхню поділу. У 1888—1889 р. це явище докладно вивчав російський учений О. Г. Столєтов (1839— 1896). Він виготовив конденсатор, одна з обкладок якого С була сітчастою, й увімкнув його в електричне коло з гальванометром (мал. 6.1). Коли на негативно заряджену цинкову обкладку Р падає ультрафіолетове світло, у колі виникає струм, який фіксує гальванометр. Якщо джерело струму Е увімкнути протилежно (обкладку Р приєднати до позитивного полюса), то струм у колі не йтиме. За допомогою потенціометра R напругу на конденсаторі можна змінювати. Вивчивши за допомогою такої установки залежність сили струму від частоти хвилі світла, його інтенсивності, інших характеристик випромінювання, О. Г. Столєтов установив три закони фотоефекту: 1) число електронів, що вилітають із поверхні тіла під дією електромагнітного випромінювання, пропорційне його інтенсивності; 2) для кожної речовини залежно від її температури і стану поверхні існує мінімальна частота світла VQ, за якої ще можливий зовнішній фотоефект; 3) максимальна кінетична енергія фотоелектронів залежить від частоти опромінення і не залежить від його інтенсивності. При поясненні цих висновків на основі хвильової теорії виникли протиріччя між її положеннями й одержаними результатами. Це змусило вчених шукати інше тлумачення механізму поглинання світлового випромінювання. З цією метою А. Ейнштейн застосував квантові уявлення про природу світла і на їх основі вивів рівняння фотоефекту. Як відомо, для того щоб електрон покинув тверде тіло або рідину, він має виконати роботу виходу A0, тобто подолати енергетичний бар'єр взаємодії з атомами і молекулами, які утримують його всередині тіла. За квантовою теорією поглинання світла, це передавання фотоном усієї своєї енергії мікрочастинкам речовини. Отже, фотоефект може відбутися лише за умови, що фотон має енергію більшу за роботу виходу (hv > A0); якщо ж hv < А0, ТО фотоефект неможливий. Якщо енергія фотона, передана електрону внаслідок поглинання світла, більша за роботу виходу, то електрон набуває кінетичної енергії. Мінімальну частоту v0 (або максимальну довжину хвилі Фотоелектрони — це електрони, вибиті з поверхні тіла внаслідок фотоефекту Фізичний зміст роботи виходу в металів полягає в тому, що це мінімальна енергія, потрібна для виходу електрона з тіла у вакуум. Тому, крім хімічної природи металу, вона істотно залежить від стану поверхні тіла За законом збереження енергії:
Це співвідношення називають рівнянням Ейнштейна для зовнішнього фотоефекту. За пояснення законів зовнішнього фотоефекту А. Ейнштейн у 1922 р. був удостоєний Нобелівської премії. Отже, обгрунтування явища фотоефекту на основі квантових уявлень про природу світла стало переконливим доказом корпускулярних властивостей електромагнітного випромінювання і започаткувало розвиток квантової фізики. Приклад. Чи відбудеться фотоефект у разі опромінення цинкової пластинки ультрафіолетовим світлом довжиною хвилі 200 нм? Яку максимальну швидкість можуть мати фотоелектрони при цьому? Робота виходу електрона для цинку дорівнює 4,24 еВ. За допомогою рівняння Ейнштейна можна пояснити всі три закони фотоефекту. Справді, інтенсивність монохроматичного випромінювання пропорційна числу фотонів, що падають на поверхню за 1 с: /~ Nф. У свою чергу, від числа фотонів залежить число вибитих із поверхні тіла електронів Ne. Отже, Nе ~ /. За граничних умов червоної межі фотоефекту кінетична енергія електрона дорівнює нулю. Тому червона межа фотоефекту визначається лише роботою виходу і залежить від хімічної природи металу, наявності домішок і стану його поверхні: Електрон-вольт (еВ) — це одиниця енергії, еквівалентна 1,6 · 10-19Дж Межу фотоефекту називають «червоною», тому що в разі зміщення довжини хвилі в бік червоного світла ( ЗАПИТАННЯ
Зміст уроку
Если у вас есть исправления или предложения к данному уроку, напишите нам. Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум. |
Авторські права | Privacy Policy |FAQ | Партнери | Контакти | Кейс-уроки
© Автор системы образования 7W и Гипермаркета Знаний - Владимир Спиваковский
При использовании материалов ресурса
ссылка на edufuture.biz обязательна (для интернет ресурсов -
гиперссылка).
edufuture.biz 2008-© Все права защищены.
Сайт edufuture.biz является порталом, в котором не предусмотрены темы политики, наркомании, алкоголизма, курения и других "взрослых" тем.
Ждем Ваши замечания и предложения на email:
По вопросам рекламы и спонсорства пишите на email: