Гипермаркет знаний>>Математика>>Математика 8 класс>>Математика:Функция у = kx2, ее свойства и график
ФУНКЦИЯ у = кх1, ЕЕ СВОЙСТВА И ГРАФИК
Уже в 7-м классе мы с вами начали понимать, что в равенстве у = f(х) правая часть, т.е. выражение f(x), не исчерпывается перечисленными выше четырьмя случаями (С, kx, kx + m, х2). у = f(x), где
Построим точки (0; 0), (1; 2), (-1; 2), (2; 8), (-2; 8), (1,5; 4,5), (-1,5; 4,5) на координатной плоскости (рис. 4); они намечают некоторую линию, проведем ее (рис. 5).
. Сравните рисунки 1, 5 и 7. Не правда ли, проведенные линии похожи? Каждую из них называют параболой; при этом точку (0; 0) называют вершиной параболы, а ось у — осью симметрии параболы. От величины коэффициента k зависит «скорость устремления» ветвей параболы вверх или, как еще говорят, Точно так же обстоит дело с любой другой функцией вида у = kx2, где k > 0. Графиком ее является парабола с вершиной в начале координат, ветви параболы направлены вверх, причем тем круче, чем больше коэффициент k. Ось у является осью симметрии параболы. Кстати, ради краткости речи математики часто вместо длинной фразы «парабола, служащая графиком функции у = kx2», говорят «парабола у = кх2», а вместо термина «ось симметрии параболы» используют термин «ось параболы». Вы замечаете, что имеется аналогия с функцией у = kx? Если k > 0, то графиком функции у = kx является прямая, проходящая через начало координат (помните, мы говорили коротко:прямая у = kx), причем и здесь от величины коэффициента k зависит «степень крутизны» прямой. Это хорошо видно на
у = - х2 (здесь k = - 1). Составим таблицу значении:
Отметим еще, что парабола у = kx2 касается оси х в точке (0; 0), т. е. одна ветвь параболы плавно переходит в другую, как бы прижимаясь к оси х. Вообще, график функции у = - f(x) симметричен графику функции у = f(x) относительно оси абсцисс. Свойства функции у = kx2 при k > 0 Описывая свойства этой функции, мы будем опираться на ее геометрическую модель — параболу (рис. 13). 1. Так как для любого значения х по формуле у = kx2 можно вычислить соответствующее значение у, то функция определена в любой точке х (при любом значении аргумента х). Короче это записывают так: область определения функции есть (-оо, +оо), т. е. вся координатная прямая.
, то kx2 > О как произведение двух положительных чисел k и х2. 3. у = kx2 — непрерывная функция. Напомним, что этот термин мы рассматриваем пока как синоним предложения «график функции есть сплошная линия, которую можно начертить, не отрывая карандаша от бумаги». В старших классах будет дано более точное математическое истолкование понятия непрерывности функции, не опирающееся на геометрическую иллюстрацию. 4.y/наим = 0 (достигается при х = 0); унаи6 не существует. Напомним, что {/наим — это наименьшее значение функции, а Унаиб. — наибольшее значение функции на заданном промежутке; если промежуток не указан, то унаим- и унаиб, — соответственно наименьшее и наибольшее значения функции в области определения. 5. Функция у = kx2 возрастает при х > О и убывает при х < 0. Напомним, что в курсе алгебры 7-го класса мы договорились называть функцию, график которой на рассматриваемом промежутке идет слева направо как бы «в горку», возрастающей, а функцию, график которой на рассматриваемом промежутке идет слева направо как бы «под горку», — убывающей. Более точно можно сказать так: функцию у = f (x) называют возрастающей на промежутке X, если на этом промежутке большему значению аргумента соответствует В учебнике «Алгебра—7» процесс перечисления свойств функции мы называли чтением графика. Процесс чтения графика будет у нас постепенно становиться все насыщеннее и интереснее — по мере изучения новых свойств функций. Те пять свойств, которые перечислены выше, мы обсуждали в 7-м классе для изученных там функций. Добавим одно новое свойство. Функцию у = f(x) называют ограниченной снизу, если все значения функции больше некоторого числа. Геометрически это означает, что график функции расположен выше некоторой прямой, параллельной оси х. А теперь посмотрите: график функции у = kx2 расположен выше прямой у = - 1 (или у = - 2, это неважно) — она проведена на рис. 13. Значит, у — kx2 (k > 0) — ограниченная снизу функция. Наряду с функциями, ограниченными снизу, рассматривают и функции, ограниченные сверху. Функцию у — f(x) называют ограниченной сверху, если все значения функции меньше некоторого числа. Геометрически это означает, что график функции расположен ниже некоторой прямой, параллельной оси х. Итак, мы получили еще одно свойство, добавим его к тем пяти, что указаны выше. 6. Функция у = kx2 (k > 0) ограничена снизу и не ограничена сверху.
2. у = 0 при х = 0; у < 0 при . З.у = kx2 — непрерывная функция. 5. Функция возрастает при х < 0, убывает при х > 0. 6.Функция ограничена сверху и не ограничена снизу. Дадим пояснения последнему свойству: имеется прямая, параллельная оси х (например, у = 1, она проведена на рис. 14), такая, что вся парабола лежит ниже этой прямой; это значит, что функция ограничена сверху. С другой стороны, нельзя провести такую прямую, параллельную оси х, чтобы вся парабола была расположена выше этой прямой; это значит, что функция не ограничена снизу. Использованный выше порядок ходов при перечислении свойств функции не является законом, пока он сложился хронологически именно таким. Более-менее определенный порядок ходов мы выработаем постепенно и унифицируем в курсе алгебры 9-го класса. Пример 1. Найти наименьшее и наибольшее значения функции у = 2х2 на отрезке: а) [0, 2]; б) [- 2, - 1]; в) [- 1, 1,5]. Решение. б) Построим график функции у = 2х2 и выделим его часть на отрезке [- 2, - 1] (рис. 16). Замечаем, что 2/наим = 2 (достигается при х = - 1), а yнаиб = 8 (достигается при х = - 2). в) Построим график функции у = 2х2 и выделим его часть на отрезке [- 1, 1,5] (рис. 17). Замечаем, что унанм = 0 (достигается при х = 0), а yнаиб достигается в точке х = 1,5; подсчитаем это значение:(1,5) = 2-1,52 = 2- 2,25 = 4,5. Итак, yнаиб =4,5.
Решение. В учебнике «Алгебра—7» мы выработали алгоритм графического решения уравнений, напомним его. Чтобы графически решить уравнение f(x) = g (x), нужно: 1) рассмотреть две функции у = -x2 и у = 2x -3; 3) Построим график функции у = 2х - 3. Это — прямая, для ее построения достаточно найти любые две точки графика. Если х = 0, то у = - 3; если х = 1, то у = -1. Итак, нашли две точки (0; -3) и (1; -1). Прямая, проходящая через эти две точки (график функции у = 2х - 3), изображена на том же чертеже (см. рис. 18). 4) По чертежу находим, что прямая и парабола пересекаются в двух точках А(1; -1) и Б(-3; -9). Значит, данное уравнение имеет два корня: 1 и - 3 — это абсциссы точек А и В. Ответ: 1,-3.
Поэтому всегда полезно проверить себя. Так, в рассмотренном примере надо убедиться, что точка А(1; —1) принадлежит параболе у = — х2 (это легко — достаточно подставить в формулу у = — х2 координаты точки А; получим - 1 = - 12 — верное числовое равенство) и прямой у = 2х - 3 (и это легко — достаточно подставить в формулу у = 2х - 3 координаты точки А; получим - 1 =2-3 — верное числовое равенство). То же самое надо сделать и для Пример 3. Решить систему уравнений Решение. Преобразуем первое уравнение системы к виду у = - х2. Графиком этой функции является парабола, изображенная на рис. 18. Парабола и прямая пересекаются в точках А(1; -1) и В (- 3; - 9). Координаты этих точек и служат решениями заданной системы уравнений. Ответ: (1; -1), (-3; -9). Пример 4. Дана функция у — f (x), где а) вычислить f(-4), f(-2), f(0), f(1,5), f(2), f(3); б) построить график функции; в) с помощью графика перечислить свойства функции. Решение, а) Значение х = - 4 удовлетворяет условию —, следовательно, f(-4) надо вычислять по первой строке задания функции.Имеем f(x) = - 0,5x2, значит, f(-2) = -0,5.(-2)2=-2; Значение удовлетворяет условию , поэтому надо вычислять по второй строке задания функции. Имеем f(х) = х + 1, значит, Значение х = 1,5 удовлетворяет условию 1 < х < 2, т. е. f(1,5) надо вычислять по третьей строке задания функции. Имеем f (х) = 2х2 , значит, б) Построение графика осуществим «по кусочкам». Сначала построим параболу у = -0,5x2 и выделим ее часть на отрезке [-4, 0] (рис. 19). Затем построим прямую у = х + 1 и. выделим ее часть на полуинтервале (0, 1] (рис. 20). Далее построим параболу у = 2х2 и выделим ее часть на полуинтервале (1, 2] (рис. 21). Наконец, все три «кусочка» изобразим в одной системе координат; получим график функции у = f(x) (рис. 22). в) Перечислим свойства функции или, как мы условились говорить, прочитаем график.
2. у = 0 при х = 0; у > 0 при 0<х<2;у<0 при - 4 < х < 0. 3. Функция претерпевает разрыв при х = 0. 4. Функция возрастает на отрезке [-4, 2]. 5. Функция ограничена и снизу и сверху. 6. yнаим = -8 (достигается при х = -4); yнаи6. = 8 (достигается при х = 2). Пример 5. Дана функция у = f(x) , где f(x) = Зх2. Найти: f(1), f(- 2), f(а), f(2а), f(а + 1), f(-х), f(Зх),f(x - 1), Решение. Так как f (х) = Зх2, то последовательно получаем: f(1) =3.12 = 3; f( x2) +b = 3x2 +b
f(x) =З.(-x)2 =3x2 f(-x)+ 5 =3x2 +5 Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки
Если у вас есть исправления или предложения к данному уроку, напишите нам. Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум. |
Авторські права | Privacy Policy |FAQ | Партнери | Контакти | Кейс-уроки
© Автор системы образования 7W и Гипермаркета Знаний - Владимир Спиваковский
При использовании материалов ресурса
ссылка на edufuture.biz обязательна (для интернет ресурсов -
гиперссылка).
edufuture.biz 2008-© Все права защищены.
Сайт edufuture.biz является порталом, в котором не предусмотрены темы политики, наркомании, алкоголизма, курения и других "взрослых" тем.
Ждем Ваши замечания и предложения на email:
По вопросам рекламы и спонсорства пишите на email: