KNOWLEDGE HYPERMARKET


Степень с отрицательным целым показателем

Гипермаркет знаний>>Математика>>Математика 8 класс>>Математика:Степень с отрицательным целым показателем



                            СТЕПЕНЬ С ОТРИЦАТЕЛЬНЫМ ЦЕЛЫМ ПОКАЗАТЕЛЕМ


Вы умеете вычислять значение степени с любым натуральным показателем. Например,

0,2х = 0,2; З2 = 3-3 = 9; 43 = 4•4•4 = 64; I4 = 1•1 • 1•1 = 1;
(-2)5 = (-2)•(-2)•(-2)•(-2)•(-2) = -32;
06 = 0•0•0•0•0•0 = 0 и т. д.
Но математики на этом не остановились.
Так, еще в курсе алгебры 7-го класса мы познакомились с понятием степени с нулевым показателем: если 14-06-176.jpg, то а 0 = 1.
Например, 5,7° = 1; (- 3)° = 1 и т. д.
Постепенно продвигаясь в изучении математического языка, мы с вами поймем, что означают в математике символы 14-06-177.jpg и т. д. Частично это
мы сделаем уже в настоящем параграфе, а частично — в курсе алгебры 11-го класса.
Зададим вопрос: если уж вводить символ 2-3, то каким математическим содержанием его наполнить? Хорошо бы, рассуждали математики, чтобы сохранялись привычные свойства степеней, например, чтобы при умножении степеней с одинаковыми основаниями показатели складывались; в частности,
чтобы выполнялось следующее равенство:

2•2з = 2о (подробнее: 2•2з = 2о = 2-3 + 3 - 2°).
Но 2° = 1, а тогда из равенства 2•2з = = 1 получаем, что 14-06-178.jpg . Значит, появились основания определить 14-06-179.jpg .
Подобные рассуждения и позволили ввести следующее определение.
Определение. Если n — натуральное число и 14-06-176.jpg, то под а -n понимают 14-06-180.jpg:

14-06-181.jpg

Например, 14-06-182.jpg и т. д.
Естественно, что записанную выше формулу при необходимости используют справа налево, например:

14-06-183.jpg

Отметим одно важное тождество, которое часто используется на практике:

14-06-184.jpg
Пример 1. Вычислить14-06-185.jpg
Решение. Имеем:

14-06-186.jpg

14-06-187.jpg

Пример 2. Доказать, что:

14-06-188.jpg

Рассмотрим тождества, доказанные в примере 2, повнимательнее. Первое означает, что

a-3•a-5 = a-3+-5

(при умножении степеней с одинаковыми основаниями показатели складываются).
Второе тождество означает, что
а4-34-(-3)
(при делении степеней с одинаковыми основаниями из показателя делимого надо вычесть показатель делителя).
Третье тождество означает, что
-2)-3(-2)•(-3)
(при возведении степени в степень показатели перемножаются).
Как видите, те свойства степеней, к которым вы привыкли, имея дело с натуральными показателями, сохраняются и для отрицательных целых показателей.
Вообще, справедливы следующие свойства (мы считаем, что 14-06-189.jpg — произвольные целые числа):

1.as•at = as+t

2.as:at = as-t
3. (as)t = ast.
4. (ab)s = as • bs
Заметим, что теперь мы имеем право не делать в свойстве 2 ограничения s > t (как это было тогда, когда мы оперировали только с натуральными показателями степени). Например, верно как равенство а7 : а2 = а7 -2, так и равенство а2 : а7 = а2-'7.
Частичные обоснования указанных свойств были сделаны выше, этим и ограничимся.





Библиотека с учебниками и книгами на скачку бесплатно онлайн, Математика для 8 класса скачать, школьная программа по математике, планы конспектов уроков


Содержание урока
1236084776 kr.jpg конспект урока                       
1236084776 kr.jpg опорный каркас  
1236084776 kr.jpg презентация урока
1236084776 kr.jpg акселеративные методы 
1236084776 kr.jpg интерактивные технологии 

Практика
1236084776 kr.jpg задачи и упражнения 
1236084776 kr.jpg самопроверка
1236084776 kr.jpg практикумы, тренинги, кейсы, квесты
1236084776 kr.jpg домашние задания
1236084776 kr.jpg дискуссионные вопросы
1236084776 kr.jpg риторические вопросы от учеников
 
Иллюстрации
1236084776 kr.jpg аудио-, видеоклипы и мультимедиа 
1236084776 kr.jpg фотографии, картинки 
1236084776 kr.jpg графики, таблицы, схемы
1236084776 kr.jpg юмор, анекдоты, приколы, комиксы
1236084776 kr.jpg притчи, поговорки, кроссворды, цитаты

Дополнения
1236084776 kr.jpg рефераты
1236084776 kr.jpg статьи 
1236084776 kr.jpg фишки для любознательных 
1236084776 kr.jpg шпаргалки 
1236084776 kr.jpg учебники основные и дополнительные
1236084776 kr.jpg словарь терминов                          
1236084776 kr.jpg прочие 

Совершенствование учебников и уроков
1236084776 kr.jpg исправление ошибок в учебнике
1236084776 kr.jpg обновление фрагмента в учебнике 
1236084776 kr.jpg элементы новаторства на уроке 
1236084776 kr.jpg замена устаревших знаний новыми 
 
Только для учителей
1236084776 kr.jpg идеальные уроки 
1236084776 kr.jpg календарный план на год  
1236084776 kr.jpg методические рекомендации  
1236084776 kr.jpg программы
1236084776 kr.jpg обсуждения


Интегрированные уроки


Если у вас есть исправления или предложения к данному уроку, напишите нам.

Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум.