KNOWLEDGE HYPERMARKET


Трапеция

Гипермаркет знаний>>Математика>>Математика 8 класс>>Математика: Трапеция


                                                             ТРАПЕЦИЯ


Трапецией называется четырехугольник, у которого только две противолежащие стороны параллельны. Эти параллельные стороны называются основаниями трапеции. Две другие стороны называются боковыми сторонами.

На рисунке 135 вы видите трапецию ABCD с основаниями АВ и CD и боковыми сторонами ВС и AD.

Трапеция, у которой боковые стороны равны, называется равнобокой. Отрезок, соединяющий середины боковых сторон, называется средней линией трапеции.


22-06-16.jpg

Теорема 6.8. Средняя линия трапеции параллельна основаниям и равна их полусумме.

Доказательство. Пусть ABCD — данная трапеция (рис. 136). Проведем через вершину В и середину Р боковой стороны CD прямую. Она пересекает прямую AD в некоторой точке Е.

Треугольники РВС и PED равны по второму признаку равенства треугольников. У них CP=DP по построению, углы при вершине Р равны как вертикальные, а углы РСВ и PDE равны как внутренние накрест лежащие при параллельных прямых ВС и AD и секущей CD. Из равенства треугольников следует равенство сторон: РВ=РЕ, BC=ED.

Значит, средняя линия PQ трапеции является средней линией треугольника ABE. По свойству средней линии треугольника PQIIAE и отрезок

22-06-17.jpg

Теорема доказана.

Задача (60). Докажите, что у равнобокой трапеции углы при основании равны.

Решение. Пусть ABCD — равнобокая трапеция (рис. 137). Докажем, что углы трапеции при основании CD равны.

22-06-18.jpg
 
Проведем через вершину В прямую, параллельную стороне AD. Она пересечет луч DC в некоторой точке Е. Четырехугольник ABED — параллелограмм. По свойству параллелограмма BE=AD. По условию AD=BC (трапеция равнобокая), значит, треугольник ВСЕ равнобедренный с основанием ЕС. Углы треугольника и трапеции при вершине С совпадают, а углы при вершинах Е и D равны как соответственные углы при пересечении параллельных прямых секущей. Поэтому 20-06-61.jpgADC= 20-06-61.jpgBCD. Утверждение доказано.
 


А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений

Видео по математикескачать, домашнее задание, учителям и школьникам на помощь онлайн


Содержание урока
1236084776 kr.jpg конспект урока                       
1236084776 kr.jpg опорный каркас  
1236084776 kr.jpg презентация урока
1236084776 kr.jpg акселеративные методы 
1236084776 kr.jpg интерактивные технологии 

Практика
1236084776 kr.jpg задачи и упражнения 
1236084776 kr.jpg самопроверка
1236084776 kr.jpg практикумы, тренинги, кейсы, квесты
1236084776 kr.jpg домашние задания
1236084776 kr.jpg дискуссионные вопросы
1236084776 kr.jpg риторические вопросы от учеников
 
Иллюстрации
1236084776 kr.jpg аудио-, видеоклипы и мультимедиа 
1236084776 kr.jpg фотографии, картинки 
1236084776 kr.jpg графики, таблицы, схемы
1236084776 kr.jpg юмор, анекдоты, приколы, комиксы
1236084776 kr.jpg притчи, поговорки, кроссворды, цитаты

Дополнения
1236084776 kr.jpg рефераты
1236084776 kr.jpg статьи 
1236084776 kr.jpg фишки для любознательных 
1236084776 kr.jpg шпаргалки 
1236084776 kr.jpg учебники основные и дополнительные
1236084776 kr.jpg словарь терминов                          
1236084776 kr.jpg прочие 

Совершенствование учебников и уроков
1236084776 kr.jpg исправление ошибок в учебнике
1236084776 kr.jpg обновление фрагмента в учебнике 
1236084776 kr.jpg элементы новаторства на уроке 
1236084776 kr.jpg замена устаревших знаний новыми 
 
Только для учителей
1236084776 kr.jpg идеальные уроки 
1236084776 kr.jpg календарный план на год  
1236084776 kr.jpg методические рекомендации  
1236084776 kr.jpg программы
1236084776 kr.jpg обсуждения


Интегрированные уроки


Если у вас есть исправления или предложения к данному уроку, напишите нам.

Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум.