Гипермаркет знаний>>Информатика>>Информатика 9 класс>>Информатика: Электронные таблицы и математическое моделирование
ЭЛЕКТРОННЫЕ ТАБЛИЦЫ И МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ
§ 23. Электронные таблицы и математическое моделирование Основные темы параграфа: ♦ математическая модель; Математическая модель Что такое компьютерное математическое моделирование? Снова вернемся к теме математического моделирования, обсуждение которой было начато в § 9. Реальную систему, для которой создается математическая модель, принято называть объектом моделирования. Объектами математического моделирования могут быть некоторые конструкции, например, железнодорожный мост или корабль; природные объекты, например месторождение полезных ископаемых, водохранилище, а также процессы и явления, происходящие во времени, например взлет космической ракеты с космодрома, изменение погодных условий в определенной географической точке, изменение со временем численности определенных популяций. Для людей могут оказаться жизненно важными многие вопросы, связанные с этими объектами и процессами. Например: на какой высоте ракета достигнет первой космической скорости и выйдет на орбиту спутника Земли; до какой предельной температуры нагреется ее оболочка? Какой может быть максимальная нагрузка на железнодорожный мост, при которой не будет происходить его разрушение? Каким будет уровень воды в водохранилище в тех погодных условиях, которые предсказывают метеорологи? Не вымрет ли данная популяция животных через сто лет? На эти вопросы желательно получить ответы теоретическим путем, поскольку экспериментальный путь либо невозможен, либо он возможен, но опасен. Например, при перегрузке моста можно его разрушить, при перегреве корпуса ракеты ее можно сжечь; а экспериментально проверить, что будет с популяцией животных через сто лет, невозможно. В подобных ситуациях на помощь человеку приходят математическое моделирование и вычислительный эксперимент. Этапы математического моделирования на компьютере В математической модели используются количественные (числовые) характеристики объекта. Например, в математической модели полета ракеты учитываются масса и скорость ракеты, сила тяги двигателей, сопротивление атмосферного воздуха, теплоемкость обшивки ракеты, время полета, высота ракеты над поверхностью Земли, плотность атмосферы. Все эти величины связываются между собой через уравнения, отражающие физические законы движения тела в воздушной среде, нагревания тела в процессе трения. Из этих уравнений, зная одни величины — исходные данные, можно вычислить другие величины — результаты. Например, зная массу ракеты, силу тяги двигателей, скорость сгорания топлива, коэффициент трения воздуха о корпус, можно вычислить, какой будет высота и скорость ракеты в данный момент времени, а также температура обшивки ракеты. Часто такие расчеты бывает трудно осуществить вручную, и тогда используются компьютерные методы решения задачи. Реализованная на компьютере математическая модель называется компьютерной математической моделью, а проведение расчетов с помощью компьютерной модели с целью прогнозирования поведения моделируемой системы называется вычислительным экспериментом. Таким образом, этапы компьютерного математического моделирования следующие: 1) выделение количественных характеристик моделируемой системы, существенных для решаемой задачи; В результате вычислительного эксперимента можно получить прогноз поведения исследуемой системы; выяснить вопрос о том, как изменение одних характеристик системы отразится на других. Одним из видов прикладных программных средств, пригодных для реализации математической модели на компьютере, являются электронные таблицы. Пример математического моделирования в ЭТ Чаще всего электронные таблицы используются в задачах такого типа, которые были рассмотрены в предыдущих параграфах: для получения расчетных ведомостей, смет, справок, списков, т. е. в области делопроизводства. Однако электронные таблицы могут оказаться полезными и для научных целей. С их помощью можно строить компьютерные математические модели, проводить вычислительные эксперименты. Рассмотрим пример такого вычислительного эксперимента. Ученые установили, что прирост какого-либо вида живых организмов за счет рождаемости прямо пропорционален их количеству, а убыль за счет смертности прямо пропорциональна квадрату их количества. Этот закон известен под названием закона Мальтуса. Пусть в одном хозяйстве собираются разводить карпов. Прежде чем запускать мальков в пруд, решили провести расчеты. Согласно закону Мальтуса, изменение числа рыб за один год вычисляется по формуле $N= kN – qN2. И. Семакин, Л. Залогова, С. Русаков, Л. Шестакова, Информатика, 9 класс
Содержание урока
Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум. |
Авторські права | Privacy Policy |FAQ | Партнери | Контакти | Кейс-уроки
© Автор системы образования 7W и Гипермаркета Знаний - Владимир Спиваковский
При использовании материалов ресурса
ссылка на edufuture.biz обязательна (для интернет ресурсов -
гиперссылка).
edufuture.biz 2008-© Все права защищены.
Сайт edufuture.biz является порталом, в котором не предусмотрены темы политики, наркомании, алкоголизма, курения и других "взрослых" тем.
Ждем Ваши замечания и предложения на email:
По вопросам рекламы и спонсорства пишите на email: