Гипермаркет знаний>>Информатика>>Информатика 9 класс>>Информатика: Алгоритм Евклида
АЛГОРИТМ ЕВКЛИДА
§ 40. Алгоритм Евклида
Основные темы параграфа: наибольший общий делитель; идея алгоритма Евклида; описание алгоритма Евклида блок-схемой; программа на AЯ и на Паскале. Наибольший общий делитель Рассмотрим следующую задачу: требуется составить программу определения наибольшего общего делителя (НОД) двух натуральных чисел. Вспомним математику. Наибольший общий делитель двух натуральных чисел — это самое большое натуральное число, на которое они делятся нацело. Например, у чисел 12 и 18 имеются общие делители: 2, 3, 6. Наибольшим общим делителем является число 6. Это записывается так: НOД(12, 18) = 6. Обозначим исходные данные как М и N. Постановка задачи выглядит следующим образом: Дано: М, N Найти: НОД(M, N). В данном случае какой-то дополнительной математической формализации не требуется. Сама постановка задачи носит формальный математический характер. Не существует формулы для вычисления НОД(М, N) по значениям М и N. Но зато достаточно давно, задолго до появления ЭВМ, был известен алгоритмический способ решения этой задачи. Называется он алгоритмом Евклида. Идея алгоритма Евклида Идея этого алгоритма основана на том свойстве, что если М>N, то НОД(М, N) = НОД(М – N, N). Иначе говоря, НОД двух натуральных чисел равен НОД их положительной разности (модуля их разности) и меньшего числа. Легко доказать это свойство. Пусть К — общий делитель М и N (М > Н). Это значит, что М = тК, N = пК, где т,п — натуральные числа, причем т > п. Тогда М - N = К(т - п), откуда следует, что К — делитель числа М - N. Значит, все общие делители чисел М и N являются делителями их разности М - N в том числе и наибольший общий делитель. Второе очевидное свойство: НОД(М, М) = М. Для «ручного» счета алгоритм Евклида выглядит так: 1) если числа равны, то взять любое из них в качестве ответа, в противном случае продолжить выполнение алгоритма; 2) затенить большее число разностью большего и меньшего из чисел; 3) вернуться к выполнению п. 1. Рассмотрим этот алгоритм на примере М=32, N=24:
M 32 8 8 8 N 24 24 16 8
Получили: НОД(32, 24) = НОД(8, 8) = 8, что верно. Описание алгоритма Евклида блок-схемой На рис. 6.8 приведена блок-схема алгоритма Евклида. Структура алгоритма — цикл-пока с вложенным ветвлением. Цикл повторяется, пока значения М и N не равны друг другу. В ветвлении большее из двух значений заменяется на их разность. А теперь посмотрите на трассировочную таблицу алгоритма для исходных значений М = 32, N = 24.
В итоге получился верный результат. Программа на АЯ и на Паскале
Запишем алгоритм на АЯ и программу на Паскале.
Коротко о главном Алгоритм Евклида предназначен для получения наибольшего общего делителя двух натуральных чисел. Структура алгоритма Евклида — цикл с вложенным ветвлением. Ручная трассировка может использоваться для проверки правильности лишь сравнительно простых алгоритмов. Правильность программ проверяется путем тестирования на компьютере. Вопросы и задания 1. Выполните на компьютере программу Еvklid. Протестируйте ее на значениях М= 32, N = 24; М = 696, N = 234. 2. Составьте программу нахождения наибольшего общего делите¬ля трех чисел, используя следующую формулу: НОД(А, B, С) = НОД(НОД(A, В), С). 3. Составьте программу нахождения наименьшего общего кратно¬го (НОК) двух чисел, используя формулу: А.В = НОД (А, В).HOK(А, В).
И. Семакин, Л. Залогова, С. Русаков, Л. Шестакова, Информатика, 9 класс Отослано читателями из интернет-сайтов
Вся информатика онлайн, список тем по предметам, сборник конспектов по информатике, домашняя работа, вопросы и ответы, рефераты по информатике 9 класс, планы уроков
Содержание урока
конспект урока
опорный каркас
презентация урока
акселеративные методы
интерактивные технологии
Практика
задачи и упражнения
самопроверка
практикумы, тренинги, кейсы, квесты
домашние задания
дискуссионные вопросы
риторические вопросы от учеников
Иллюстрации
аудио-, видеоклипы и мультимедиа
фотографии, картинки
графики, таблицы, схемы
юмор, анекдоты, приколы, комиксы
притчи, поговорки, кроссворды, цитаты
Дополнения
рефераты
статьи
фишки для любознательных
шпаргалки
учебники основные и дополнительные
словарь терминов
прочие
Совершенствование учебников и уроков
исправление ошибок в учебнике
обновление фрагмента в учебнике
элементы новаторства на уроке
замена устаревших знаний новыми
Только для учителей
идеальные уроки
календарный план на год
методические рекомендации
программы
обсуждения
Интегрированные уроки
Если у вас есть исправления или предложения к данному уроку, напишите нам.
Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум.
|