Гипермаркет знаний>>Физика и астрономия>>Физика 11 класс>> Вихревое электрическое поле
§ 12 ВИХРЕВОЕ ЭЛЕКТРИЧЕСКОЕ ПОЛЕ Рассмотрим сначала первый случай возникновения индукционного тока. Поместим круговой проволочный виток радиусом r в переменное во времени однородное магнитное поле (рис. 2.8). Пусть индукция магнитного поля увеличивается, тогда будет увеличиваться со временем и магнитный поток через поверхность, ограниченную витком. Согласно закону электромагнитной индукции в витке появится индукционный ток. При изменении индукции магнитного поля по линейному закону индукционный ток будет постоянен. Какие же силы заставляют заряды в витке двигаться? Само магнитное поле, пронизывающее катушку, этого сделать не может, так как магнитное поле действует исключительно на движущиеся заряды (этим-то оно и отличается от электрического), а проводник с находящимися в нем электронами неподвижен. Кроме магнитного поля, на заряды, причем как на движущиеся, так и на неподвижные, действует еще электрическое поле. Но ведь те поля, о которых пока шла речь (электростатичсское или стационарное), создаются электрическими зарядами, а индукционный ток появляется в результате действия меняющегося магнитного поля. Поэтому можно предположить, что электроны в неподвижном проводнике приводятся в движение электрическим полем, и это поле непосредственно порождается меняющимся магнитным полем. Тем самым утверждается новое фундаментальное свойство поля: изменяясь во времени, магнитное поле порождает электрическое поле. К этому выводу впервые пришел Дж. Максвелл. Теперь явление электромагнитной индукции предстает перед нами в новом свете. Главное в нем — это процесс порождения полем магнитным поля электрического. При этом наличие проводящего контура, например катушки, не меняет существа процесса. Проводник с запасом свободных электронов (или других частиц) играет роль прибора: он лишь позволяет обнаружить возникающее электрическое поле. Электрическое поле, возникающее при изменении магнитного поля, имеет совсем другую природу, чем электростатическое. Оно не связано непосредственно с электрическими зарядами, и его линии напряженности не могут на них начинаться и кончаться. Они вообще нигде не начинаются и не кончаются, а представляют собой замкнутые линии, подобныe линиям индукции магнитного поля. Это так называемое вихревое электрическое поле (рис. 2.9).
Направление силовых линий напряженности
Индукционные токи в массивных проводниках. Особенно большого числового значения индукционные токи достигают в массивных проводниках, из-за того, что их сопротивление мало. Такие токи, называемые токами Фуко по имени исследовавшего их французского физика, можно использовать для нагревания проводников. На этом принципе основано устройство индукционных печей, например используемых в быту СВЧ-печей. Также этот принцип используется для плавки металлов. Кроме этого явление э.пектромагнит-ной индукции используется в детекторах металла, устанавливаемых при входах в здания аэровокзалов, театров и т. д. Однако во многих устройствах возникновение токов Фуко приводит к бесполезным и даже нежелательным потерям энергии на выделение тепла. Поэтому железные сердечники трансформаторов, электродвигателей, генераторов и т. д. делают не сплошными, а состоящими из отдельных пластин, изолированных друг от друга. Поверхности пластин должны быть перпендикулярны направлению вектора напряженности вихревого электрического поля. Сопротивление электрическому току пластин будет при этом максимальным, а выделение тепла — минимальным.
Применение ферритов. Радиоэлектронная аппаратура работает в области очень высоких частот (миллионы колебаний в секунду). Здесь применение сердечников катушек из отдельных пластин уже не дает нужного эффекта, так как большие токи Фуко возникают в каледой пластине. В § 7 отмечалось, что существуют магнитные изоляторы — ферриты. При перемагничивании в ферритах не возникают вихревые токи. В результате потери энергии на выделение в них тепла сводятся к минимуму. Поэтому из ферритов делают сердечники высокочастотных трансформаторов, магнитные антенны транзисторов и др. Ферритовые сердечники изготовляют из смеси порошков исходных веществ. Смесь прессуется и подвергается значительной термической обработке. При быстром изменении магнитного поля в обычном ферромагнетике возникают индукционные токи, магнитное поле которых, в соответствии с правилом Ленца, препятствует изменению магнитного потока в сердечнике катушки. Из-за этого поток магнитной индукции практически не меняется и сердечник не перемагничивается. В ферритах вихревые токи очень малы, поэтому их можно быстро перемагничивать. Наряду с потенциальным кулоновским электрическим полем существует вихревое электрическое поле. Линии напряженности этого поля замкнуты. Вихревое поле порождается меняющимся магнитным полем.
Содержание урока
Если у вас есть исправления или предложения к данному уроку, напишите нам. Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум. |
Авторські права | Privacy Policy |FAQ | Партнери | Контакти | Кейс-уроки
© Автор системы образования 7W и Гипермаркета Знаний - Владимир Спиваковский
При использовании материалов ресурса
ссылка на edufuture.biz обязательна (для интернет ресурсов -
гиперссылка).
edufuture.biz 2008-© Все права защищены.
Сайт edufuture.biz является порталом, в котором не предусмотрены темы политики, наркомании, алкоголизма, курения и других "взрослых" тем.
Ждем Ваши замечания и предложения на email:
По вопросам рекламы и спонсорства пишите на email: