Гипермаркет знаний>>Математика>>Математика 10 класс>> Обобщение понятия о показателе степени
§ 43. Обобщение понятия о показателе степени
Вы умеете вычислять значение степени с любым целочисленным показателем, руководствуясь при этом следующими определениями:
Но математики на этом не остановились, они научились работать не только с целочисленными показателями. В этом параграфе мы обсудим, какой смысл придается в математике понятию степени с дробным показателем, т.е. выясним, что означают такие символы математического языка, как 25, З-0'3 и т.д.
Зададимся вопросом: если вводить символ то каким математическим содержанием его наполнить? Хорошо бы, рассуждали математики, чтобы сохранялись привычные свойства степеней, например, чтобы при возведении степени в степень показатели перемножались, в частности, чтобы выполнялось следующее равенство:
 Положим Тогда интересующее нас равенство можно переписать в виде а5=23, откуда получаем Значит, появились основания определить
Подобные соображения и позволили математикам принять следующее определение.
Определение 1. Если
Самое любопытное, что введенное определение оказалось настолько удачным, что при нем сохранились все привычные свойства степеней, которые были доказаны для натуральных показателей: при умножении степеней с одинаковыми основаниями показатели складываются, при делении — вычитаются и т.д. Пусть, например, нам нужно выполнить умножение
Поскольку складывать дроби легче, чем применять свойства радикалов, на практике предпочитают заменять радикалы степенями с дробными показателями. Для иллюстрации этого положения вернемся к примеру Если перейти к дробным показателям, то получим:
 Видите, насколько быстрее и проще мы получили здесь тот же результат, что и в § 42. Пример 1. Вычислить:  Решение.
г) Это задание некорректно, поскольку нет определения степени с дробным показателем для случая отрицательного основания. Математики договорились возводить в дробные степени только неотрицательные числа (и это оговорено в определении). Так что запись вида считается в математике лишенной смысла. Замечание. Иногда приходится слышать возражения: неверно, что запись лишена смысла, ведь можно вычислить корень 3-й степени из числа -8; получится Так почему бы не считать, что
 Если бы математики не запретили себе возводить в дробные степени отрицательные числа, то вот с какими неприятностями пришлось бы столкнуться:
 Получилось «равенство» -2 = 2. Выбирая определения, математики как раз и заботятся о том, чтобы все было точно, определенно, недвусмысленно. Поэтому в определении степени с нулевым показателем а° появилось ограничение а в определении степени с положительным дробным показателем  Разумеется, математики не ограничились понятием степени с положительным дробным показателем, они ввели и определение степени с отрицательным дробным показателем, используя известную идею:
 Но наличие дробного показателя заставляет сделать ограничение а>0, а наличие знаменателя заставляет сделать ограничение а= 0; в итоге приходится накладывать ограничение а > 0.
Определение 2. Если
Итак, теперь мы знаем, что такое степень с любым рациональным показателем. Справедливы следующие свойства (мы считаем, что а> 0, b> 0, s и t — произвольные рациональные числа):
 Частичные обоснования указанных свойств были сделаны выше; этим мы и ограничимся.
Пример 2. Упростить выражение:
 Решение.
 Пример 3. Решить уравнения:  Решение: а) Возведя обе части уравнения в куб, получаем:
х2=1,
х = ±1. б) Это практически то же самое уравнение, что и в п. а), но с одной существенной оговоркой: поскольку переменная х возводится в дробную степень, она, по определению, должна принимать только неотрицательные значения. Значит, из найденных выше двух значений х в качестве корня уравнения мы имеем право взять лишь значение х = 1. Ответ: а) ±1; б) 1.
Пример 4. Решить уравнение:  Решение. Введем новую переменную  Значит, получаем квадратное уравнение относительно новой переменной у:
у2 -2у-8 = 0.
Решив это уравнение, получим: у1 =-2, у2 =4. Теперь задача сводится к решению двух уравнений:
 Первое уравнение не имеет корней, поскольку (напомним еще раз) область допустимых значений для переменной х в подобных случаях определяется условием х > 0. Решая второе уравнение, последовательно находим:
Уравнения, в которых переменная содержится под знаком корня или возводится в дробную степень, называют иррациональными. Первое знакомство с иррациональными уравнениями состоялось у вас в курсе алгебры 8-го класса, где встречались уравнения, содержащие переменную под знаком квадратного корня. В этой главе мы рассмотрели еще несколько примеров решения иррациональных уравнений — пример 2 из § 39, пример 2 из § 40 и примеры 3 и 4 из § 43.
Основные методы решения иррациональных уравнений:
— метод возведения обеих частей уравнения в одну и ту же степень; — метод введения новых переменных; — функционально-графический метод.
Если используется метод возведения обеих частей уравнения в одну и ту же четную степень, то возможно появление посторонних корней, значит, обязательна проверка всех найденных решений — об этом мы говорили и раньше, в курсе алгебры 8-го класса.
А.Г. Мордкович Алгебра 10 класс
Видео по математике скачать, домашнее задание, учителям и школьникам на помощь онлайн
Содержание урока
конспект урока
опорный каркас
презентация урока
акселеративные методы
интерактивные технологии
Практика
задачи и упражнения
самопроверка
практикумы, тренинги, кейсы, квесты
домашние задания
дискуссионные вопросы
риторические вопросы от учеников
Иллюстрации
аудио-, видеоклипы и мультимедиа
фотографии, картинки
графики, таблицы, схемы
юмор, анекдоты, приколы, комиксы
притчи, поговорки, кроссворды, цитаты
Дополнения
рефераты
статьи
фишки для любознательных
шпаргалки
учебники основные и дополнительные
словарь терминов
прочие
Совершенствование учебников и уроков
исправление ошибок в учебнике
обновление фрагмента в учебнике
элементы новаторства на уроке
замена устаревших знаний новыми
Только для учителей
идеальные уроки
календарный план на год
методические рекомендации
программы
обсуждения
Интегрированные уроки
Если у вас есть исправления или предложения к данному уроку, напишите нам.
Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум.
|