Реклама




Поляризація світла. Дисперсія світла

Материал из Гипермаркет знаний

Перейти к: навигация, поиск

Гіпермаркет Знань>>Фізика і астрономія>>Фізика 11 клас>> Фізика: Поляризація світла. Дисперсія світла



ПОЛЯРИЗАЦІЯ СВІТЛА. ДИСПЕРСІЯ СВІТЛА




ДИСПЕРСІЯ


Поширюючись у речовині, електромагнітна хвиля взаємодіє з нею. Внаслідок цього речовина впливає на поширення електромагнітної хвилі. Зокрема, швидкість хвилі змінюється в разі переходу з однієї речовини в іншу.


Як уже встановлено, наслідком залежності швидкості електромагнітної хвилі, зокрема видимого світла, від природи речовини є явище його заломлення на межі двох середовищ. Показник заломлення визначають відношенням швидкостей хвилі в кожній із речовин. Зокрема, для випадку, коли хвиля переходить із вакууму в речовину, показник заломлення визначається за формулою:


2-85.jpg


Таку залежність можна записати лише для певної довжини хвилі. Експериментальні дослідження засвідчують, що хвилі різних довжин (частот) поширюються в певному середовищі з різними швидкостями. Це пояснюють тим, що хвилі різної довжини зазнають різних впливів з боку речовини. Наслідком залежності швидкості поширення електромагнітної хвилі від її частоти є залежність показника заломлення від довжини хвилі:


2-86.jpg


Явище залежності показника заломлення від довжини хвилі називають дисперсією.


У лабораторних умовах спостерігати дисперсію найкраще на прикладі видимого світла.


Якщо на межу поділу двох середовищ із показниками заломлення n1 і n2, причому n1 < n2 (мал. 4.64),


30180.jpg


спрямувати під певним кутом а > 0 пучок світла червоного кольору (1-19-1.jpg = 700 нм), то він зазнає заломлення, і в другому середовищі поширюватиметься під кутом у1< а.


Речовина впливає на швидкість електромагнітної хвилі, яка в ній поширюється


Показник заломлення речовин залежить від довжини хвилі


Якщо під таким самим кутом а > 0 спрямувати на межу поділу двох середовищ пучок світла зеленого кольору (1-19-1.jpg= 400 нм ), то він також зазнає заломлення, але кут заломлення у2 буде меншим від кута заломлення пучка світла червоного кольору (мал. 4.65):


01564.jpg


Y2 < Y1.


Подібну закономірність спостерігатимемо і в разі заломлення пучка світла синього кольору:


YЗ <Y2 < Y1.


Скориставшись означенням показника заломлення, за яким 2-87.jpg (мал. 4.66),


30181.jpg


можна дійти висновку, що результати дослідів узагальнюються таким чином:


n1 < n2 < n3,


тобто показник заломлення світла найменший для світла червоного кольору і найбільший для світла синього кольору.


Графічну залежність показника заломлення від довжини хвилі для деяких речовин наведено на мал. 4.67.


025456.jpg


З аналізу графіка залежності n =f1-19-1.jpg.) випливає, що вона має нелінійний характер, і зі збільшенням довжини хвилі показник заломлення зменшується. Короткі хвилі заломлюються сильніше, ніж довгі. Інакше кажучи, зі збільшенням частоти хвилі світла показник заломлення зростає.


Залежність показника заломлення одного із сортів скла від довжини хвилі видимого світла, поданої в кольорах, наведено на полі.


Перше ґрунтовне дослідження прояву явища дисперсії провів у 1666 р. видатний англійський фізик І. Ньютон. Свої дослідження він розпочав на установці, основною частиною якої була трикутна призма. Він розмістив її на підставці у затемненій кімнаті і спрямував на неї пучок білого сонячного світла, яке проходило крізь малий отвір у віконниці (мал. 4.68). 


30182.jpg


На білому екрані, розміщеному за призмою, з явилася різнобарвна стрічка, названа І. Ньютоном спектром. В одержаному спектрі спостерігалися всі кольори — від червоного до фіолетового.


Чому ж призма розкладає біле світло на складові частини?


Фіолетовий — 1,532 Синій — 1,528 Голубий — 1,524 Зелений — 1,519 Жовтий — 1,517 Оранжевий— 1,514 Червоний — 1,513


Коли вузький пучок світла падає на бічну грань призми ЛВ (мал. 4.69),


01455-1.jpg


окремі хвилі з різною довжиною зазнають різно¬го заломлення внаслідок явища дисперсії. Тому пучок білого світла розкладається на окремі кольори. Процес повторюється і на грані призми ВС. Отже, паралельний пучок білого світла, пройшовши крізь трикутну призму, стає розбіжним. Складові хвилі в ньому поширюються в різних напрямках. Потрапивши на білий екран, вони забарвлюють його в різні кольори. Послідовність цих кольорів така (мал. 4.70):


червоний, оранжевий, жовтий, зелений, голубий, синій, фіолетовий.


021256-5.jpg


Трикутна призма розкладає пучок білого світла на кольорові складові


При зведенні різнокольорових пучків одержується білий пучок


Якщо «кольорові» хвилі зібрати в один пучок, то на екрані, на який він падає, спостерігатимемо білу пляму (мал. 4.71).


0156456.jpg


Спектр, одержаний у разі проходження білого світла крізь призму,  називають суцільним. У ньому всі кольори плавно переходять один в інший.


Спектрографи є в багатьох наукових лабораторіях. Вони допомагають вивчати різні фізичні та хімічні процеси в речовині


За складом спектра можна судити про властивості речовини, яка випромінює світло. З цією метою використовують прилади, названі спектрографами. Основною частиною такого приладу (мал. 4.72)


30184.jpg


є трикутна призма, яка розкладає вузький пучок світла, що проходить крізь об'єктив, на спектр, який залишає слід на фотоплівці.




ПОЛЯРИЗАЦІЯ ЕЛЕКТРОМАГНІТНИХ ХВИЛЬ


Розглядаючи природу електромагнітних хвиль, ми встановили, що хвиля, яка випромінюється вібратором, є поперечною. Вектор магнітної індукції і вектор напруженості електричного поля взаємно перпендикулярні і знаходяться в площині, перпендикулярній до вектора швидкості хвилі.


В електромагнітній хвилі, яку випромінює один вібратор, вектори магнітної індукції і напруженості електричного поля взаємно перпендикулярні


У хвилі, яка поширюється від антени передавача,  напрямок  векторів 2-18-1.jpg залишається незмінним протягом усього часу поширення хвилі.


Хвилю, вектори 2-88-1.jpg якої тривалий час залишаються в одній площині, називають плоско поляризованою.


Плоско поляризовану хвилю випромінює вібратор кожного радіопередавача. Щоб переконатися в цьому, візьмемо навчальний передавач, який випромінює хвилю довжиною в декілька сантиметрів. Його вібратор розміщений у рупорі-антені вертикально. Спрямуємо антену так, щоб випромінювана хвиля потрапляла на антену приймача, що й зафіксує реєструвальний прилад. Після цього повернемо передавач на 90° навколо поздовжньої осі. Приймач перестане реагувати на радіохвилю. Передавальний і приймальний вібратори будуть при цьому взаємно перпендикулярними. Оскільки змінний струм в антені індукує електрична складова хвилі, характеристикою якої є вектор 2-23-1.jpg, то отриманий результат досліду підтверджує поляризацію хвилі.


Світло — також електромагнітна хвиля, тому можна очікувати поляризацію і світлової хвилі. Однак вібратором, який випромінює світлову хвилю, є атом, і таких атомів у речовині велика кількість, тому неможливо виділити переважний напрямок їхніх коливань. З цієї причини у звичайному світлі, яке називають природним, коливання векторів 2-88-1.jpg відбуваються в усіх напрямках. Проте є методи, за допомогою яких із загального потоку електромагнітних хвиль можна виділити ті, вектори 2-88-1.jpg яких коливаються в одній площині. Метод поляризації природного світла можна зрозуміти з такого прикладу.


Радіопередавач з одним вібратором випромінює плоско поляризовану хвилю


Поляризацію радіохвилі можна виявити за допомогою радіоприймача з антеною


У природному світлі вектори 2-88-1.jpg коливаються в різних площинах


Природне світло можна поляризувати


Закріпимо один кінець мотузки в стіні і натягнемо її в горизонтальному напрямку. Вільний кінець мотузки почнемо коливати у вертикальному напрямку так, щоб уздовж неї поширювалася хвиля. Коливання мотузки поширюватимуться й тоді, коли мотузка буде протягнута крізь плоский ящик (мал. 4.73, а). Якщо ж цей ящик повернути на 90°, то коливання доходитимуть лише до нього, за ящиком мотузка буде нерухомою (мал. 4.73, б).


30186.jpg


Для поляризації світла використовують спеціальні пристрої з асиметрією оптичних властивостей. Наприклад, якщо світло падає на плоске діелектричне дзеркало під певним кутом, то хвилі, електричний вектор яких паралельний поверхні, відбиватимуться ним (дзеркалом), а ті, в яких цей вектор перпендикулярний до поверхні — послаблюватимуться аж до зникнення. Відбите від дзеркала світло виявиться поляризованим.


Існують природні і штучні кристали, які мають оптичну анізотропію — неоднорідність оптичних властивостей в різних напрямках. У разі проходження крізь ці кристали світло поляризується. Прикладом може бути природний кристал турмаліну, значення показника заломленння якого в різних напрямках різне.


Око людини нездатне відрізняти поляризоване світло від природного. Хоча комахи, зокрема бджоли, можуть визначати напрямок площини поляризації поляризованого світла.


У лабораторних умовах для виявлення поляризації світла використовують пристрої, які називають аналізаторами. Це поляризаційні прилади, які встановлюють на шляху поширення досліджуваного світла, здебільшого після поляризатора.


На мал. 4.74 зображено установку, в якій здійснюється поляризація природного світла.


30187.jpg


Установка складається із джерела, яке дає пучок світла, двох поляризаційних пристроїв та екрана. Перший пристрій поляризує світло, а другий — аналізатор — визначає рівень поляризації. Повертаючи цей пристрій навколо горизонтальної осі, можна знайти таке його положення, за якого світло зовсім не потраплятиме на екран. У цьому випадку кажуть про «схрещені» поляроїди. Площина, в якій коливається електричний вектор світла після проходження крізь поляризатор, буде перпендикулярною до площини коливань світла в аналізаторі. Отже, щоб з'ясувати, чи світло поляризоване, потрібно на шляху поширення світлового пучка розмістити поляризаційний пристрій. Якщо під час його повертання яскравість променя, що проходить крізь нього, змінюється, то досліджуване світло поляризоване.


Явище поляризації широко застосовують у техніці. У сучасних містах, де багато радіопередавачів різного призначення, випромінювальні антени розміщують у взаємно перпендикулярних площинах (мал. 4.75). За таких  умов  дві  радіостанції, які працюють на однаковій частоті, не заважають одна одній.


01561.jpg


Під час фотографування великих гладеньких поверхонь (наприклад води) з'являються так звані відблиски — дзеркально відбиті світлові пучки, які істотно погіршують якість зображення. Щоб позбутися цих відблисків, на об'єктив фотоапарата надягають спеціальні поляризаційні фільтри, які працюють у режимі аналізатора (див. попередній дослід). Відбите світло завжди частково або повністю поляризоване. Тому, повертаючи поляризаційний фільтр, можна знайти таке його положення, за якого світло відблисків не потрапляє в об'єктив фотоапарата.


Поляризаційні фільтри застосовують у фотографії


Цукриметр дозволяє оперативно  визначати вміст цукру в розчині


У цукровій промисловості застосовують прилади для визначення концентрації цукру в мелясі чи в розчині — цукриметри. Розчин цукру здатний повертати площину поляризації світла на певний кут залежно від концетрації цукру (мал. 4.76).


30188.jpg


Цукриметр складається із джерела світла (штучного чи природного), поляризатора, аналізатора, окуляра і шкали, за якою можна визначати кут повертання аналізатора. Прилад налаштовують так, щоб світло, пройшовши крізь поляризатор, не проходило крізь аналізатор. Після цього між поляризатором і аналізатором розміщують прозору капсулу з цукровим розчином. В окулярі з'являється світло. Подальшим повертанням аналізатора добиваються повного затемнення окуляра. За кутом повертання аналізатора визначають концентрацію цукру в розчині.


Спеціальні поляризаційні окуляри зі схрещеними осями поляризації застосовують під час перегляду стереофільмів, у яких зображення на екран проектується поляризованим світлом.


ЗАПИТАННЯ
1. Чим відрізняється поляризоване світло від природного?
2. Чому електромагнітна хвиля, яка випромінюється одним вібратором, завжди є поляризованою?
3. У чому полягає принцип дії поляризаційних приладів?
4. У яких випадках природне світло стає поляризованим?
5. 3 якою особливістю електромагнітної хвилі пов'язане явище поляризації?
6. Де на практиці застосовують явище поляризації електромагнітних хвиль?



Є.В. Коршак, О.І. Ляшенко, В.Ф. Савченко, Фізика, 11 клас
Вислано читачами з інтернет-сайтів  



Підручники та книги по всім предметам, домашня робота, онлайн бібліотеки книжок, плани конспектів уроків з фізики, реферати та конспекти уроків з фізики для 11 класу




Зміст уроку
1236084776 kr.jpg конспект уроку і опорний каркас                      
1236084776 kr.jpg презентація уроку 
1236084776 kr.jpg акселеративні методи та інтерактивні технології
1236084776 kr.jpg закриті вправи (тільки для використання вчителями)
1236084776 kr.jpg оцінювання 

Практика
1236084776 kr.jpg задачі та вправи,самоперевірка 
1236084776 kr.jpg практикуми, лабораторні, кейси
1236084776 kr.jpg рівень складності задач: звичайний, високий, олімпійський
1236084776 kr.jpg домашнє завдання 

Ілюстрації
1236084776 kr.jpg ілюстрації: відеокліпи, аудіо, фотографії, графіки, таблиці, комікси, мультимедіа
1236084776 kr.jpg реферати
1236084776 kr.jpg фішки для допитливих
1236084776 kr.jpg шпаргалки
1236084776 kr.jpg гумор, притчі, приколи, приказки, кросворди, цитати

Доповнення
1236084776 kr.jpg зовнішнє незалежне тестування (ЗНТ)
1236084776 kr.jpg підручники основні і допоміжні 
1236084776 kr.jpg тематичні свята, девізи 
1236084776 kr.jpg статті 
1236084776 kr.jpg національні особливості
1236084776 kr.jpg словник термінів                          
1236084776 kr.jpg інше 

Тільки для вчителів
1236084776 kr.jpg ідеальні уроки 
1236084776 kr.jpg календарний план на рік 
1236084776 kr.jpg методичні рекомендації 
1236084776 kr.jpg програми
1236084776 kr.jpg обговорення



Если у вас есть исправления или предложения к данному уроку, напишите нам.


Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум.

Реклама
Просмотры
Реклама










Конец Света - Начало Света
Личные инструменты
...
...
...