KNOWLEDGE HYPERMARKET


Теорема Виета
Строка 1: Строка 1:
-
<p><span class="fck_mw_special" _fck_mw_customtag="true" _fck_mw_tagname="metakeywords">Гипермаркет Знаний - первый в мире!, Гипермаркет Знаний, Математика, 8 класс, Алгебра, урок, на Тему, Теорема Виета</span>  
+
<metakeywords>Гипермаркет Знаний - первый в мире!, Гипермаркет Знаний, Математика, 8 класс, Алгебра, урок, на Тему, Теорема Виета</metakeywords>  
-
</p><p><b><a href="Гипермаркет знаний - первый в мире!">Гипермаркет знаний</a>&gt;&gt;<a href="Математика">Математика</a>&gt;&gt;<a href="Математика 8 класс">Математика 8 класс</a>&gt;&gt;Математика:Теорема Виета</b>
+
 
-
</p><p><br />
+
'''[[Гипермаркет знаний - первый в мире!|Гипермаркет знаний]]&gt;&gt;[[Математика|Математика]]&gt;&gt;[[Математика 8 класс|Математика 8 класс]]&gt;&gt;Математика: Теорема Виета)'''
-
</p><p><b>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp; ТЕОРЕМА ВИЕТА </b><br />
+
 
 +
Теорема Виета
 +
 
</p><p><br />В этом параграфе мы познакомимся с любопытными соотношениями между корнями квадратного уравнения и его коэффициентами. Эти соотношения впервые обнаружил французский математик Франсуа Виет (1540—1603).  
</p><p><br />В этом параграфе мы познакомимся с любопытными соотношениями между корнями квадратного уравнения и его коэффициентами. Эти соотношения впервые обнаружил французский математик Франсуа Виет (1540—1603).  
</p><p><br />  
</p><p><br />  

Версия 10:45, 8 октября 2012

Гипермаркет знаний>>Математика>>Математика 8 класс>>Математика: Теорема Виета)

Теорема Виета

</p>


В этом параграфе мы познакомимся с любопытными соотношениями между корнями квадратного уравнения и его коэффициентами. Эти соотношения впервые обнаружил французский математик Франсуа Виет (1540—1603).


<img src="/images/c/c5/14-06-47.jpg" _fck_mw_filename="14-06-47.jpg" alt="" />

Например, для уравнения Зx2 - 8x - 6 = 0, не находя его корней, можно, воспользовавшись теоремой Виета, сразу сказать, что сумма корней равна <img src="/images/6/60/14-06-48.jpg" _fck_mw_filename="14-06-48.jpg" alt="" />, а произведение корней равно <img src="/images/8/80/14-06-49.jpg" _fck_mw_filename="14-06-49.jpg" alt="" />
т. е. - 2. А для уравнения х2 - 6х + 8 = 0 заключаем: сумма корней равна 6, произведение корней равно 8; между прочим, здесь нетрудно догадаться, чему равны корни: 4 и 2.
Доказательство теоремы Виета. Корни х1 и х2 квадратного уравнения ах2 + bх + с = 0 находятся по формулам

<img src="/images/9/9a/14-06-50.jpg" _fck_mw_filename="14-06-50.jpg" alt="" />

где D = b2 — 4ас — дискриминант уравнения. Сложив эти корни,
получим

<img src="/images/9/95/14-06-51.jpg" _fck_mw_filename="14-06-51.jpg" alt="" />

Теперь вычислим произведение корней х1 и х2 Имеем

<img src="/images/d/df/14-06-52.jpg" _fck_mw_filename="14-06-52.jpg" alt="" />

Второе соотношение доказано: <img src="/images/4/48/14-06-53.jpg" _fck_mw_filename="14-06-53.jpg" alt="" />
Замечание. Теорема Виета справедлива и в том случае, когда квадратное уравнение имеет один корень (т. е. когда D = 0), просто в этом случае считают, что уравнение имеет два одинаковых корня, к которым и применяют указанные выше соотношения.
Особенно простой вид принимают доказанные соотношения для приведенного квадратного уравнения х2 + рх + q = 0. В этом случае получаем:

x1 = x2 = -p, x1x2 =q
т.е. сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.
С помощью теоремы Виета можно получить и другие соотношения между корнями и коэффициентами квадратного уравнения. Пусть, например, х1 и х2 — корни приведенного квадратного уравнения х2 + рх + q = 0. Тогда

<img src="/images/4/4f/14-06-54.jpg" _fck_mw_filename="14-06-54.jpg" alt="" />

Однако основное назначение теоремы Виета не в том, что она выражает некоторые соотношения между корнями и коэффициентами квадратного уравнения. Гораздо важнее то, что с помощью теоремы Виета выводится формула разложения квадратного трехчлена на множители, без которой мы в дальнейшем не обойдемся.


<img src="/images/6/6c/14-06-55.jpg" _fck_mw_filename="14-06-55.jpg" alt="" />

Доказательство. Имеем

<img src="/images/3/33/14-06-56.jpg" _fck_mw_filename="14-06-56.jpg" alt="" />

Пример 1
. Разложить на множители квадратный трехчлен Зх2 - 10x + 3.
Решение. Решив уравнение Зх2 - 10x + 3 = 0, найдем корни квадратного трехчлена Зх2 - 10x + 3: х1 = 3, х2 = <img src="/images/d/dd/14-06-57.jpg" _fck_mw_filename="14-06-57.jpg" alt="" />.
Воспользовавшись теоремой 2, получим

<img src="/images/3/3d/14-06-58.jpg" _fck_mw_filename="14-06-58.jpg" alt="" />

Есть смысл вместо <img src="/images/7/7c/14-06-59.jpg" _fck_mw_filename="14-06-59.jpg" alt="" /> написать Зx - 1. Тогда окончательно получим Зх2 - 10x + 3 = (х - 3)(3х - 1).
Заметим, что заданный квадратный трехчлен можно разложить на множители и без применения теоремы 2, использовав способ группировки:

Зх2 - 10x + 3 = Зх2 - 9х - х + 3 =
= Зх (х - 3) - (х - 3) = (х - 3) (Зx - 1).

Но, как видите, при этом способе успех зависит от того, сумеем ли мы найти удачную группировку или нет, тогда как при первом способе успех гарантирован.
Пример 1. Сократить дробь

<img src="/images/0/00/14-06-60.jpg" _fck_mw_filename="14-06-60.jpg" alt="" />

Решение. Из уравнения 2х2 + 5х + 2 = 0 находим х1 = - 2,

<img src="/images/9/92/14-06-61.jpg" _fck_mw_filename="14-06-61.jpg" alt="" />

Из уравнения х2 - 4х - 12 = 0 находим х1 = 6, х2 = -2. Поэтому
х2- 4х - 12 = (х- 6) (х - (- 2)) = (х - 6) (х + 2).
А теперь сократим заданную дробь:

<img src="/images/4/45/14-06-62.jpg" _fck_mw_filename="14-06-62.jpg" alt="" />

Пример 3. Разложить на множители выражения:
а)x4 + 5x2+6;               б)2x+<img src="/images/8/8d/14-06-63.jpg" _fck_mw_filename="14-06-63.jpg" alt="" />-3
Р е ш е н и е. а) Введем новую переменную у = х2. Это позволит переписать заданное выражение в виде квадратного трехчлена относительно переменной у, а именно в виде у2 + bу + 6.
Решив уравнение у2 + bу + 6 = 0, найдем корни квадратного трехчлена у2 + 5у + 6: у1 = - 2, у2 = -3. Теперь воспользуемся теоремой 2; получим

у2 + 5у + 6 = (у + 2) (у + 3).
Осталось вспомнить, что у = x2 , т. е. вернуться к заданному выражению. Итак,
x4 + 5х2+ 6 = (х2 + 2)(х2 + 3).
б) Введем новую переменную у = <img src="/images/8/8d/14-06-63.jpg" _fck_mw_filename="14-06-63.jpg" alt="" />. Это позволит переписать заданное выражение в виде квадратного трехчлена относительно переменной у, а именно в виде 2у2 + у - 3. Решив уравнение
2 + у - 3 = 0, найдем корни квадратного трехчлена 2у2 + у - 3:
y1 = 1,    y2= <img src="/images/7/7a/14-06-64.jpg" _fck_mw_filename="14-06-64.jpg" alt="" />. Далее, используя теорему 2, получим:

<img src="/images/6/64/14-06-65.jpg" _fck_mw_filename="14-06-65.jpg" alt="" />

Осталось вспомнить, что у = , т. е. вернуться к заданному выражению. Итак,

<img src="/images/4/4f/14-06-66.jpg" _fck_mw_filename="14-06-66.jpg" alt="" />

В заключение параграфа — некоторые рассуждения, опятьтаки связанные с теоремой Виета, а точнее, с обратным утверждением:
если числа х1, х2 таковы, что х1 + х2 = - р, x1x2 = q, то эти числа — корни уравнения
С помощью этого утверждения можно решать многие квадратные уравнения устно, не пользуясь громоздкими формулами корней, а также составлять квадратные уравнения с заданными корнями. Приведем примеры.

1) х2 - 11х + 24 = 0. Здесь x1 + х2 = 11, х1х2 = 24. Нетрудно догадаться, что х1 = 8, х2 = 3.

2) х2 + 11х + 30 = 0. Здесь x1 + х2 = -11,  х1х2 = 30. Нетрудно догадаться, что х1 = -5, х2 = -6.
Обратите внимание: если свободный член уравнения — положительное число, то оба корня либо положительны, либо отрицательны; это важно учитывать при подборе корней.

3) х2 + х - 12 = 0. Здесь x1 + х2 = -1, х1х2 = -12. Легко догадаться, что х1 = 3, х2 = -4.
Обратите внимание: если свободный член уравнения — отрицательное число, то корни различны по знаку; это важно учитывать при подборе корней.

4) 5х2 + 17x - 22 = 0. Нетрудно заметить, что х = 1 удовлетворяет уравнению, т.е. х1 = 1 — корень уравнения. Так как х1х2 = -<img src="/images/e/ee/14-06-67.jpg" _fck_mw_filename="14-06-67.jpg" alt="" />, а х1 = 1, то получаем, что х2 = -<img src="/images/e/ee/14-06-67.jpg" _fck_mw_filename="14-06-67.jpg" alt="" /> .

5) х2 - 293x + 2830 = 0. Здесь х1+ х2 = 293, х1х2 = 2830. Если обратить внимание на то, что 2830 = 283 • 10, а 293 = 283 + 10, то становится ясно, что х1 = 283, х2 = 10 (а теперь представьте, какие вычисления пришлось бы выполнить для решения этого квадратного уравнения с помощью стандартных формул).

6) Составим квадратное уравнение так, чтобы его корнями служили числа х1 = 8, х2 = - 4. Обычно в таких случаях составляют приведенное квадратное уравнение х2 + рх + q = 0.
Имеем х1+ х2= -р, поэтому 8 - 4 = -р, т. е. р = -4. Далее, х1х2= q, т.е. 8«(-4) = q, откуда получаем q = -32. Итак, р = -4, q = -32, значит, искомое квадратное уравнение имеет вид х2-4х-32 = 0.








Математика за 8 класс бесплатно <a href="Математика">скачать</a>, планы конспектов уроков, готовимся к школе <a href="Гипермаркет знаний - первый в мире!">онлайн</a>


<b><u>Содержание урока</u></b>
<u></u><b><img src="/images/9/95/1236084776_kr.jpg" _fck_mw_filename="1236084776 kr.jpg" _fck_mw_width="10" _fck_mw_height="10" alt="1236084776 kr.jpg" /> конспект урока                       </b>
<img src="/images/9/95/1236084776_kr.jpg" _fck_mw_filename="1236084776 kr.jpg" _fck_mw_width="10" _fck_mw_height="10" alt="1236084776 kr.jpg" /> опорный каркас  
<img src="/images/9/95/1236084776_kr.jpg" _fck_mw_filename="1236084776 kr.jpg" _fck_mw_width="10" _fck_mw_height="10" alt="1236084776 kr.jpg" /> презентация урока
<img src="/images/9/95/1236084776_kr.jpg" _fck_mw_filename="1236084776 kr.jpg" _fck_mw_width="10" _fck_mw_height="10" alt="1236084776 kr.jpg" /> акселеративные методы 
<img src="/images/9/95/1236084776_kr.jpg" _fck_mw_filename="1236084776 kr.jpg" _fck_mw_width="10" _fck_mw_height="10" alt="1236084776 kr.jpg" /> интерактивные технологии 

<b><u>Практика</u></b>
<img src="/images/9/95/1236084776_kr.jpg" _fck_mw_filename="1236084776 kr.jpg" _fck_mw_width="10" _fck_mw_height="10" alt="1236084776 kr.jpg" /> задачи и упражнения 
<img src="/images/9/95/1236084776_kr.jpg" _fck_mw_filename="1236084776 kr.jpg" _fck_mw_width="10" _fck_mw_height="10" alt="1236084776 kr.jpg" /> самопроверка
<img src="/images/9/95/1236084776_kr.jpg" _fck_mw_filename="1236084776 kr.jpg" _fck_mw_width="10" _fck_mw_height="10" alt="1236084776 kr.jpg" /> практикумы, тренинги, кейсы, квесты
<img src="/images/9/95/1236084776_kr.jpg" _fck_mw_filename="1236084776 kr.jpg" _fck_mw_width="10" _fck_mw_height="10" alt="1236084776 kr.jpg" /> домашние задания
<img src="/images/9/95/1236084776_kr.jpg" _fck_mw_filename="1236084776 kr.jpg" _fck_mw_width="10" _fck_mw_height="10" alt="1236084776 kr.jpg" /> дискуссионные вопросы
<img src="/images/9/95/1236084776_kr.jpg" _fck_mw_filename="1236084776 kr.jpg" _fck_mw_width="10" _fck_mw_height="10" alt="1236084776 kr.jpg" /> риторические вопросы от учеников
 
<b><u>Иллюстрации</u></b>
<u></u><b><img src="/images/9/95/1236084776_kr.jpg" _fck_mw_filename="1236084776 kr.jpg" _fck_mw_width="10" _fck_mw_height="10" alt="1236084776 kr.jpg" /> аудио-, видеоклипы и мультимедиа </b>
<img src="/images/9/95/1236084776_kr.jpg" _fck_mw_filename="1236084776 kr.jpg" _fck_mw_width="10" _fck_mw_height="10" alt="1236084776 kr.jpg" /> фотографии, картинки 
<img src="/images/9/95/1236084776_kr.jpg" _fck_mw_filename="1236084776 kr.jpg" _fck_mw_width="10" _fck_mw_height="10" alt="1236084776 kr.jpg" /> графики, таблицы, схемы
<img src="/images/9/95/1236084776_kr.jpg" _fck_mw_filename="1236084776 kr.jpg" _fck_mw_width="10" _fck_mw_height="10" alt="1236084776 kr.jpg" /> юмор, анекдоты, приколы, комиксы
<img src="/images/9/95/1236084776_kr.jpg" _fck_mw_filename="1236084776 kr.jpg" _fck_mw_width="10" _fck_mw_height="10" alt="1236084776 kr.jpg" /> притчи, поговорки, кроссворды, цитаты

<b><u>Дополнения</u></b>
<u></u><b><img src="/images/9/95/1236084776_kr.jpg" _fck_mw_filename="1236084776 kr.jpg" _fck_mw_width="10" _fck_mw_height="10" alt="1236084776 kr.jpg" /> рефераты</b>
<img src="/images/9/95/1236084776_kr.jpg" _fck_mw_filename="1236084776 kr.jpg" _fck_mw_width="10" _fck_mw_height="10" alt="1236084776 kr.jpg" /> статьи 
<img src="/images/9/95/1236084776_kr.jpg" _fck_mw_filename="1236084776 kr.jpg" _fck_mw_width="10" _fck_mw_height="10" alt="1236084776 kr.jpg" /> фишки для любознательных 
<img src="/images/9/95/1236084776_kr.jpg" _fck_mw_filename="1236084776 kr.jpg" _fck_mw_width="10" _fck_mw_height="10" alt="1236084776 kr.jpg" /> шпаргалки 
<img src="/images/9/95/1236084776_kr.jpg" _fck_mw_filename="1236084776 kr.jpg" _fck_mw_width="10" _fck_mw_height="10" alt="1236084776 kr.jpg" /> учебники основные и дополнительные
<img src="/images/9/95/1236084776_kr.jpg" _fck_mw_filename="1236084776 kr.jpg" _fck_mw_width="10" _fck_mw_height="10" alt="1236084776 kr.jpg" /> словарь терминов                          
<img src="/images/9/95/1236084776_kr.jpg" _fck_mw_filename="1236084776 kr.jpg" _fck_mw_width="10" _fck_mw_height="10" alt="1236084776 kr.jpg" /> прочие 
<b><u></u></b>
<u>Совершенствование учебников и уроков
</u><b><img src="/images/9/95/1236084776_kr.jpg" _fck_mw_filename="1236084776 kr.jpg" _fck_mw_width="10" _fck_mw_height="10" alt="1236084776 kr.jpg" /> исправление ошибок в учебнике</b>
<img src="/images/9/95/1236084776_kr.jpg" _fck_mw_filename="1236084776 kr.jpg" _fck_mw_width="10" _fck_mw_height="10" alt="1236084776 kr.jpg" /> обновление фрагмента в учебнике 
<img src="/images/9/95/1236084776_kr.jpg" _fck_mw_filename="1236084776 kr.jpg" _fck_mw_width="10" _fck_mw_height="10" alt="1236084776 kr.jpg" /> элементы новаторства на уроке 
<img src="/images/9/95/1236084776_kr.jpg" _fck_mw_filename="1236084776 kr.jpg" _fck_mw_width="10" _fck_mw_height="10" alt="1236084776 kr.jpg" /> замена устаревших знаний новыми 
 
<b><u>Только для учителей</u></b>
<u></u><b><img src="/images/9/95/1236084776_kr.jpg" _fck_mw_filename="1236084776 kr.jpg" _fck_mw_width="10" _fck_mw_height="10" alt="1236084776 kr.jpg" /> идеальные уроки </b>
<img src="/images/9/95/1236084776_kr.jpg" _fck_mw_filename="1236084776 kr.jpg" _fck_mw_width="10" _fck_mw_height="10" alt="1236084776 kr.jpg" /> календарный план на год  
<img src="/images/9/95/1236084776_kr.jpg" _fck_mw_filename="1236084776 kr.jpg" _fck_mw_width="10" _fck_mw_height="10" alt="1236084776 kr.jpg" /> методические рекомендации  
<img src="/images/9/95/1236084776_kr.jpg" _fck_mw_filename="1236084776 kr.jpg" _fck_mw_width="10" _fck_mw_height="10" alt="1236084776 kr.jpg" /> программы
<img src="/images/9/95/1236084776_kr.jpg" _fck_mw_filename="1236084776 kr.jpg" _fck_mw_width="10" _fck_mw_height="10" alt="1236084776 kr.jpg" /> обсуждения


<b><u>Интегрированные уроки</u></b><u>
</u>


Если у вас есть исправления или предложения к данному уроку, <a href="http://xvatit.com/index.php?do=feedback">напишите нам</a>.

Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - <a href="http://xvatit.com/forum/">Образовательный форум</a>.