Гипермаркет знаний>>Математика>>Математика 10 класс>> Тригонометрические функции числового аргумента
Тригонометрические функции числового аргумента
Какое бы действительное число t ни взять, ему можно поставить в соответствие однозначно определенное число t. Правда, правило соответствия довольно сложное, оно, как мы видели выше, заключается в следующем. Чтобы, по числу t найти значение sin t, нужно:
1) расположить числовую окружность в координатной плоскости так, чтобы центр окружности совпал с началом координат, а начальная точка А окружности попала в точку (1; 0); 2) на окружности найти точку, соответствующую числу 2; 3) найти ординату этой точки. Эта ордината и есть sin t.
Фактически речь идет о функции u = sin t, где 2 — любое действительное число. Вы умеете вычислять некоторые значения этой функции (например, , знаете некоторые ее свойства.
Точно так же можно считать, что в предыдущем параграфе вы получили некоторые представления еще о трех функциях: Все эти функции называют тригонометрическими функциями числового аргумента t.
Есть целый ряд соотношений, связывающих значения различных тригонометрических функций, несеметрические которые из этих соотношений вы уже знаете:
Из двух последних формул легко получить соотношение, связывающее tg t и ctg t
 Пример 1. Упростить выражение:
Р е ш е н и е. а) Имеем:
 Мы получили еще две важные формулы:
 Все указанные формулы используются в тех случаях, когда, зная значение какой-либо тригонометрической функции, требуется вычислить значения остальных тригонометрических функций. Пример 2. Известно, что Вычислить соответствующие значения
Р е ш е н и е. Из соотношения
 Из уравнения находим, что По условию, аргумент t принадлежит первой четверти числовой окружности, а в ней соs t > 0. Значит, из двух указанных выше возможностеи выбираем первую:  Зная значения sin t и соs t, нетрудно вычислить соответствующие значения tg t и ctg t:
 Пример 3. Известно, что Найти значения sin t, соs t, ctg t. Решение. Воспользуемся соотношением
 По условию, аргумент t принадлежит второй четверти числовой окружности, а в ней соs t < 0. Значит, из двух указанных выше возможностей выбираем вторую:
 Зная значения tg t и соs t, нетрудно вычислить соответствующие значения sin t и сtg t.

А.Г. Мордкович Алгебра 10 класс
Видео по математике скачать, домашнее задание, учителям и школьникам на помощь онлайн
Содержание урока
конспект урока
опорный каркас
презентация урока
акселеративные методы
интерактивные технологии
Практика
задачи и упражнения
самопроверка
практикумы, тренинги, кейсы, квесты
домашние задания
дискуссионные вопросы
риторические вопросы от учеников
Иллюстрации
аудио-, видеоклипы и мультимедиа
фотографии, картинки
графики, таблицы, схемы
юмор, анекдоты, приколы, комиксы
притчи, поговорки, кроссворды, цитаты
Дополнения
рефераты
статьи
фишки для любознательных
шпаргалки
учебники основные и дополнительные
словарь терминов
прочие
Совершенствование учебников и уроков
исправление ошибок в учебнике
обновление фрагмента в учебнике
элементы новаторства на уроке
замена устаревших знаний новыми
Только для учителей
идеальные уроки
календарный план на год
методические рекомендации
программы
обсуждения
Интегрированные уроки
Если у вас есть исправления или предложения к данному уроку, напишите нам.
Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум.
|