|
|
(2 промежуточные версии не показаны) | Строка 1: |
Строка 1: |
- | <metakeywords>Гипермаркет Знаний - первый в мире!, Гипермаркет Знаний, Математика, 7 класс, Алгебра, урок, на Тему, Треугольник</metakeywords> | + | <metakeywords>Гипермаркет Знаний - первый в мире!, Гипермаркет Знаний, Математика, 7 класс, Алгебра, урок, на Тему, Треугольник, вершины треугольника, угол, отрезки</metakeywords> |
| | | |
| '''[[Гипермаркет знаний - первый в мире!|Гипермаркет знаний]]>>[[Математика|Математика]]>>[[Математика 7 класс|Математика 7 класс]]>>Математика:Треугольник''' | | '''[[Гипермаркет знаний - первый в мире!|Гипермаркет знаний]]>>[[Математика|Математика]]>>[[Математика 7 класс|Математика 7 класс]]>>Математика:Треугольник''' |
| | | |
| + | <br> ''' '''[[Треугольник. Полные уроки|'''Треугольник''']] |
| | | |
- | ''' ТРЕУГОЛЬНИК''' | + | <br>'''''Треугольником''''' называется фигура, которая состоит из трех точек, не лежащих на одной прямой, и трех отрезков, попарно соединяющих эти точки. Точки называются '''[[Презентація уроку на тему «Трикутник і його елементи»|вершинами треугольника]]''', а отрезки — '''''сторонами'''''. |
| | | |
- | <br>'''''Треугольником''''' называется фигура, которая состоит из трех точек, не лежащих на одной прямой, и трех отрезков, попарно соединяющих эти точки. Точки называются '''''вершинами''''' треугольника, а отрезки — '''''сторонами'''''.
| + | На рисунке 21 вы видите треугольник с вершинами А, В, С и сторонами АВ, ВС, АС. Треугольник обозначается указанием его вершин. Вместо слова «треугольник» иногда употребляют знак [[Image:20-06-54.jpg|Треугольник]]. Например, треугольник на рисунке 21 обозначается так: [[Image:20-06-54.jpg|Треугольник]] ABC. |
| | | |
- | На рисунке 21 вы видите треугольник с вершинами А, В, С и сторонами АВ, ВС, АС. Треугольник обозначается указанием его вершин. Вместо слова «треугольник» иногда употребляют знак [[Image:20-06-54.jpg]]. Например, треугольник на рисунке 21 обозначается так: [[Image:20-06-54.jpg]] ABC.<br>Углом треугольника ABC при вершине А называется угол, образованный полупрямыми АВ и АС. Так же определяются углы треугольника при вершинах В и С.<br>Два отрезка называются равными, если они имеют одинаковую длину. Два угла называются равными, если они имеют одинаковую угловую меру в градусах.<br>Треугольники называются равными, если у них соответствующие стороны равны и соответствующие углы равны. При этом соответствующие углы должны лежать против соответствующих сторон.<br>
| + | Углом треугольника ABC при вершине А называется '''[[Практикум на тему «Суміжні кути, їх властивості»|Угол]]''', образованный полупрямыми АВ и АС. Так же определяются углы треугольника при вершинах В и С. |
| | | |
- | [[Image:20-06-55.jpg]]<br> <br>На рисунке 22 вы видите два равных треугольника ABC и A1B1C1. У них<br>АВ = А,В,, АС = А,С,, BC = BiCi, ^A=AAi, AB=ABi, ^C=^Ct. На чертеже равные отрезки обычно отмечают одной, двумя или тремя черточками, а равные углы — одной, двумя или тремя дужками.<br>Для обозначения равенства треугольников используется обычный знак равенства: =. Запись ААВС= AAIB\C\ читается так: «Треугольник ABC равен треугольнику A]BiCi*. При этом имеет значение порядок, в котором записываются вершины треугольника. Равенство ААВС— AAiB\C\ означает, что /_А= AAi, АВ= ABi, ... . А равенство ААВС= AB,A,C^ означает уже совсем другое: АА— /LBx, /-В= /^А\, ... .<br>Задача (38). Треугольники ABC и PQR равны. Известно, что сторона АВ равна 10 м, а угол С равен 90°. Чему равны сторона PQ и угол R1 Объясните ответ.<br>Решение. Так как треугольники ABC и PQR равны, тоунихЛВ = Ре, ZC= zifi. Значит, PQ= Юм, ^Д = 90°.<br> | + | Два отрезка называются равными, если они имеют одинаковую длину. Два угла называются равными, если они имеют одинаковую угловую меру в градусах. |
| + | |
| + | Треугольники называются равными, если у них соответствующие стороны равны и соответствующие углы равны. При этом соответствующие углы должны лежать против соответствующих сторон.<br> |
| + | |
| + | [[Image:20-06-55.jpg|480px|Треугольники]]<br> <br>На рисунке 22 вы видите два равных треугольника ABC и A<sub>1</sub>B<sub>1</sub>C<sub>1</sub>. <br> |
| + | |
| + | [[Image:20-06-56.jpg|480px|Обозначения равности треугольников]] |
| + | |
| + | На чертеже равные '''[[Измерение отрезков. Полные уроки|отрезки]]''' обычно отмечают одной, двумя или тремя черточками, а равные углы — одной, двумя или тремя дужками. |
| + | |
| + | Для обозначения равенства треугольников используется обычный знак равенства: =. Запись [[Image:20-06-54.jpg|Треугольник]]АВС= [[Image:20-06-54.jpg|Треугольник]]A<sub>1</sub>B<sub>1</sub>C<sub>1</sub> читается так: «Треугольник ABC равен треугольнику A<sub>1</sub>B<sub>1</sub>C<sub>1</sub>. При этом имеет значение порядок, в котором записываются вершины треугольника. Равенство [[Image:20-06-54.jpg|Треугольник]]АВС— [[Image:20-06-54.jpg|Треугольник]]A<sub>1</sub>B<sub>1</sub>C<sub>1</sub> означает, что |
| + | |
| + | [[Image:20-06-47.jpg|Угол]]А= [[Image:20-06-47.jpg|Угол]]A<sub>1</sub>, [[Image:20-06-47.jpg|Угол]]В= [[Image:20-06-47.jpg|Угол]]B<sub>1</sub>, ... . А равенство [[Image:20-06-54.jpg|Треугольник]]АВС= [[Image:20-06-54.jpg|Треугольник]]A<sub>1</sub>B<sub>1</sub>C<sub>1</sub> означает уже совсем другое: [[Image:20-06-47.jpg|Угол]]А= [[Image:20-06-47.jpg|Угол]]B<sub>1</sub>, [[Image:20-06-47.jpg|Угол]]В=[[Image:20-06-47.jpg|Угол]]А<sub>1</sub>, ... .<br>Задача (38). Треугольники ABC и PQR равны. Известно, что сторона АВ равна 10 м, а угол С равен 90°. Чему равны сторона PQ и угол R1 Объясните ответ. |
| + | |
| + | Решение. Так как треугольники ABC и PQR равны, то у них AВ = PQ, [[Image:20-06-47.jpg|Угол]]C= [[Image:20-06-47.jpg|Угол]]R. Значит, PQ= 10м, [[Image:20-06-47.jpg|Угол]]R = 90°.<br> |
| | | |
| <br> ''А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений'' <br> | | <br> ''А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений'' <br> |
| | | |
- | <sub>Планирование математике, материалы по математике 7 класса [[Математика|скачать]], учебники [[Гипермаркет знаний - первый в мире!|онлайн]] </sub> | + | <br> <br> <br> <sub>Календарно-тематическое планирование по математике, [http://xvatit.com/it/audio_television/ '''видео'''] по математике [[Гипермаркет знаний - первый в мире!|онлайн]], Математика в школе [[Математика|скачать]]</sub> |
| | | |
| <br> | | <br> |
| | | |
| '''<u>Содержание урока</u>''' | | '''<u>Содержание урока</u>''' |
- | <u></u>'''[[Image:1236084776 kr.jpg|10x10px]] конспект урока ''' | + | <u></u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] конспект урока ''' |
- | [[Image:1236084776 kr.jpg|10x10px]] опорный каркас | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] опорный каркас |
- | [[Image:1236084776 kr.jpg|10x10px]] презентация урока | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] презентация урока |
- | [[Image:1236084776 kr.jpg|10x10px]] акселеративные методы | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] акселеративные методы |
- | [[Image:1236084776 kr.jpg|10x10px]] интерактивные технологии | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] интерактивные технологии |
| | | |
| '''<u>Практика</u>''' | | '''<u>Практика</u>''' |
- | [[Image:1236084776 kr.jpg|10x10px]] задачи и упражнения | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] задачи и упражнения |
- | [[Image:1236084776 kr.jpg|10x10px]] самопроверка | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] самопроверка |
- | [[Image:1236084776 kr.jpg|10x10px]] практикумы, тренинги, кейсы, квесты | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] практикумы, тренинги, кейсы, квесты |
- | [[Image:1236084776 kr.jpg|10x10px]] домашние задания | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] домашние задания |
- | [[Image:1236084776 kr.jpg|10x10px]] дискуссионные вопросы | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] дискуссионные вопросы |
- | [[Image:1236084776 kr.jpg|10x10px]] риторические вопросы от учеников | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] риторические вопросы от учеников |
- |
| + | |
| '''<u>Иллюстрации</u>''' | | '''<u>Иллюстрации</u>''' |
- | <u></u>'''[[Image:1236084776 kr.jpg|10x10px]] аудио-, видеоклипы и мультимедиа ''' | + | <u></u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] аудио-, видеоклипы и мультимедиа ''' |
- | [[Image:1236084776 kr.jpg|10x10px]] фотографии, картинки | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] фотографии, картинки |
- | [[Image:1236084776 kr.jpg|10x10px]] графики, таблицы, схемы | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] графики, таблицы, схемы |
- | [[Image:1236084776 kr.jpg|10x10px]] юмор, анекдоты, приколы, комиксы | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] юмор, анекдоты, приколы, комиксы |
- | [[Image:1236084776 kr.jpg|10x10px]] притчи, поговорки, кроссворды, цитаты | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] притчи, поговорки, кроссворды, цитаты |
| | | |
| '''<u>Дополнения</u>''' | | '''<u>Дополнения</u>''' |
- | <u></u>'''[[Image:1236084776 kr.jpg|10x10px]] рефераты''' | + | <u></u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] рефераты''' |
- | [[Image:1236084776 kr.jpg|10x10px]] статьи | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] статьи |
- | [[Image:1236084776 kr.jpg|10x10px]] фишки для любознательных | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] фишки для любознательных |
- | [[Image:1236084776 kr.jpg|10x10px]] шпаргалки | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] шпаргалки |
- | [[Image:1236084776 kr.jpg|10x10px]] учебники основные и дополнительные | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] учебники основные и дополнительные |
- | [[Image:1236084776 kr.jpg|10x10px]] словарь терминов | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] словарь терминов |
- | [[Image:1236084776 kr.jpg|10x10px]] прочие | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] прочие |
| '''<u></u>''' | | '''<u></u>''' |
| <u>Совершенствование учебников и уроков | | <u>Совершенствование учебников и уроков |
- | </u>'''[[Image:1236084776 kr.jpg|10x10px]] исправление ошибок в учебнике''' | + | </u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] исправление ошибок в учебнике''' |
- | [[Image:1236084776 kr.jpg|10x10px]] обновление фрагмента в учебнике | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] обновление фрагмента в учебнике |
- | [[Image:1236084776 kr.jpg|10x10px]] элементы новаторства на уроке | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] элементы новаторства на уроке |
- | [[Image:1236084776 kr.jpg|10x10px]] замена устаревших знаний новыми | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] замена устаревших знаний новыми |
- |
| + | |
| '''<u>Только для учителей</u>''' | | '''<u>Только для учителей</u>''' |
- | <u></u>'''[[Image:1236084776 kr.jpg|10x10px]] идеальные уроки ''' | + | <u></u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] идеальные уроки ''' |
- | [[Image:1236084776 kr.jpg|10x10px]] календарный план на год | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] календарный план на год |
- | [[Image:1236084776 kr.jpg|10x10px]] методические рекомендации | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] методические рекомендации |
- | [[Image:1236084776 kr.jpg|10x10px]] программы | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] программы |
- | [[Image:1236084776 kr.jpg|10x10px]] обсуждения | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] обсуждения |
| | | |
| | | |
Текущая версия на 19:48, 15 июня 2012
Гипермаркет знаний>>Математика>>Математика 7 класс>>Математика:Треугольник
Треугольник
Треугольником называется фигура, которая состоит из трех точек, не лежащих на одной прямой, и трех отрезков, попарно соединяющих эти точки. Точки называются вершинами треугольника, а отрезки — сторонами.
На рисунке 21 вы видите треугольник с вершинами А, В, С и сторонами АВ, ВС, АС. Треугольник обозначается указанием его вершин. Вместо слова «треугольник» иногда употребляют знак . Например, треугольник на рисунке 21 обозначается так: ABC.
Углом треугольника ABC при вершине А называется Угол, образованный полупрямыми АВ и АС. Так же определяются углы треугольника при вершинах В и С.
Два отрезка называются равными, если они имеют одинаковую длину. Два угла называются равными, если они имеют одинаковую угловую меру в градусах.
Треугольники называются равными, если у них соответствующие стороны равны и соответствующие углы равны. При этом соответствующие углы должны лежать против соответствующих сторон.
 На рисунке 22 вы видите два равных треугольника ABC и A1B1C1.
На чертеже равные отрезки обычно отмечают одной, двумя или тремя черточками, а равные углы — одной, двумя или тремя дужками.
Для обозначения равенства треугольников используется обычный знак равенства: =. Запись АВС= A1B1C1 читается так: «Треугольник ABC равен треугольнику A1B1C1. При этом имеет значение порядок, в котором записываются вершины треугольника. Равенство АВС— A1B1C1 означает, что
А= A1, В= B1, ... . А равенство АВС= A1B1C1 означает уже совсем другое: А= B1, В= А1, ... . Задача (38). Треугольники ABC и PQR равны. Известно, что сторона АВ равна 10 м, а угол С равен 90°. Чему равны сторона PQ и угол R1 Объясните ответ.
Решение. Так как треугольники ABC и PQR равны, то у них AВ = PQ, C= R. Значит, PQ= 10м, R = 90°.
А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений
Календарно-тематическое планирование по математике, видео по математике онлайн, Математика в школе скачать
Содержание урока
конспект урока
опорный каркас
презентация урока
акселеративные методы
интерактивные технологии
Практика
задачи и упражнения
самопроверка
практикумы, тренинги, кейсы, квесты
домашние задания
дискуссионные вопросы
риторические вопросы от учеников
Иллюстрации
аудио-, видеоклипы и мультимедиа
фотографии, картинки
графики, таблицы, схемы
юмор, анекдоты, приколы, комиксы
притчи, поговорки, кроссворды, цитаты
Дополнения
рефераты
статьи
фишки для любознательных
шпаргалки
учебники основные и дополнительные
словарь терминов
прочие
Совершенствование учебников и уроков
исправление ошибок в учебнике
обновление фрагмента в учебнике
элементы новаторства на уроке
замена устаревших знаний новыми
Только для учителей
идеальные уроки
календарный план на год
методические рекомендации
программы
обсуждения
Интегрированные уроки
Если у вас есть исправления или предложения к данному уроку, напишите нам.
Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум.
|