|
|
(1 промежуточная версия не показана) | Строка 1: |
Строка 1: |
- | <metakeywords>Гипермаркет Знаний - первый в мире!, Гипермаркет Знаний, Математика, 5 класс, Алгебра, урок, на Тему, Формулы</metakeywords> | + | <metakeywords>Гипермаркет Знаний - первый в мире!, Гипермаркет Знаний, Математика, 5 класс, Алгебра, урок, на Тему, Формулы, число, уравнение, задачи, выражение, километров, формуле, периметр, квадраты чисел</metakeywords> |
| | | |
- | '''[[Гипермаркет знаний - первый в мире!|Гипермаркет знаний]]>>[[Математика|Математика]]>>[[Математика 5 класс|Математика 5 класс]]>>Математика:Формулы''' | + | '''[[Гипермаркет знаний - первый в мире!|Гипермаркет знаний]]>>[[Математика|Математика]]>>[[Математика 5 класс|Математика 5 класс]]>>Математика:Формулы'''<br> |
| | | |
| <br> | | <br> |
| | | |
- | <br> | + | '''Формулы '''<br> |
| | | |
- | '''Формулы '''<br>
| + | <br>'''Задача 1'''. Велосипедист едет со скоростью 15 км/ч. Какое расстояние он проедет за 4 ч? |
| | | |
- | <br>'''Задача 1'''. Велосипедист едет со скоростью 15 км/ч. Какое расстояние он проедет за 4 ч? <br>Решение. Чтобы узнать, сколько километров проедет велосипедист, надо умножить его скорость на время пути, то есть найти произведение 15-4. <br>Получаем, что путь равен 60 км. <br>Запишем правило нахождения пути по скорости и времени движения в буквенном виде. Обозначим путь буквой s, скорость — буквой v и время — <br>буквой t. Получим равенство s = vt. <br>Это равенство называют '''формулой пути'''. <br>Запись какого-нибудь правила с помощью букв называют '''формулой'''. <br>По формуле пути можно решать различные задачи.
| + | '''Решение'''. Чтобы узнать, сколько '''[[Міри довжини. Кілометр. Порівняння значень величин|километров]]''' проедет велосипедист, надо умножить его скорость на время пути, то есть найти произведение 15-4. Получаем, что путь равен 60 км. |
| | | |
- | '''Задача 2.''' Автомобиль движется со скоростью 60 км/ч. За какое время он пройдет путь в 600 км? <br>Решение. Заменим в формуле s = vt буквы s и v их значениями: s = 600, v = 60.
| + | Запишем правило нахождения пути по скорости и времени движения в буквенном виде. Обозначим путь буквой s, скорость — буквой v и время — буквой t. Получим равенство s = vt. |
| | | |
- | Получим уравнение: 600 = 60t. <br>Из него находим, что t = 600 : 60, то есть t = 10. Значит, чтобы проехать 600 км, автомобиль должен двигаться 10 ч.
| + | ''Это равенство называют формулой пути. '' |
| | | |
- | [[Image:16-06-6.jpg]]<br><br>'''Задача 3.''' С какой скоростью должен идти человек, чтобы пройти 24 км за 4 ч? <br>Решение. Заменим в формуле s = vt буквы s и t их значениями: s = 24, t = 4. Получим уравнение: 24 = v • 4, то есть 24 = 4v. Решив уравнение, получим:
| + | ''Запись какого-нибудь правила с помощью букв называют формулой. '' |
| | | |
- | v = 6. Значит, человек должен идти со скоростью 6 км/ч. <br>
| + | По формуле пути можно решать различные '''[[Практичне завдання до теми Додавання та віднімання чисел в межах 10 Поняття вартість монет|задачи]]'''. |
| | | |
- | '''Запишите формулу пути и расскажите, что означают входящие в нее буквы.''' | + | '''Задача 2.''' Автомобиль движется со скоростью 60 км/ч. За какое время он пройдет путь в 600 км? <br>'''Решение'''. Заменим в формуле s = vt буквы s и v их значениями: s = 600, v = 60. |
| + | |
| + | Получим '''[[Рівняння з двома змінними та його розв'язок. Презентація уроку|уравнение]]''': 600 = 60t. |
| + | |
| + | Из него находим, что t = 600 : 60, то есть t = 10. Значит, чтобы проехать 600 км, автомобиль должен двигаться 10 ч. |
| + | |
| + | [[Image:16-06-6.jpg|120px|Задание]]<br><br>'''Задача 3.''' С какой скоростью должен идти человек, чтобы пройти 24 км за 4 ч? |
| + | |
| + | '''Решение'''. Заменим в формуле s = vt буквы s и t их значениями: s = 24, t = 4. Получим уравнение: 24 = v • 4, то есть 24 = 4v. Решив уравнение, получим: v = 6. Значит, человек должен идти со скоростью 6 км/ч. <br> |
| + | |
| + | ''Запишите формулу пути и расскажите, что означают входящие в нее буквы.'' |
| | | |
| 674. Найдите по формуле s = vt путь, пройденный: <br>а) со скоростью 96 м/мин за 25 мин; <br>б) со скоростью 7 км/ч за 6 ч. | | 674. Найдите по формуле s = vt путь, пройденный: <br>а) со скоростью 96 м/мин за 25 мин; <br>б) со скоростью 7 км/ч за 6 ч. |
| | | |
- | 675. Найдите по формуле пути значение скорости v если: <br>а) t = 12 ч, s = 240 км; <br>б) t = 5 с, s = 15 м. <br> | + | 675. Найдите по '''[[Фішки для допитливих до уроку на тему «Величина. Числові і буквені вирази, їх числове значення. Формули»|формуле]]''' пути значение скорости v если: |
| | | |
- | 676. Найдите по формуле пути значение времени t, если: <br>а) s = 64 км, и = 8 км/с; <br>б) s = 132 км, v = 12 км/ч. <br>
| + | а) t = 12 ч, s = 240 км; <br>б) t = 5 с, s = 15 м. <br> |
| | | |
- | 677. Запишите формулу для вычисления периметра прямоугольника, если буквами а и b обозначены длины сторон прямоугольника, а буквой Р <br>его периметр. Вычислите по этой формуле: <br>а) периметр Р прямоугольника, если его стороны а = 4 дм и b = 3 дм; <br>б) сторону прямоугольника, если его периметр равен 30 см, а другая сторона — 7 см. <br>
| + | 676. Найдите по формуле пути значение времени t, если: |
| | | |
- | 678. Запишите формулу для вычисления периметра Р квадрата, сторона которого а. Вычислите по этой формуле: <br>а) периметр квадрата со стороной 9 см; <br>б) сторону квадрата, периметр которого 64 м. <br>
| + | а) s = 64 км, и = 8 км/с; <br>б) s = 132 км, v = 12 км/ч. <br> |
| | | |
- | 679. Запишите в виде формулы правило нахождения делимого а по делителю b, неполному частному q и остатку r. По этой формуле найдите: <br>а) делимое а, если неполное частное равно 15, делитель — 7 и остаток — 4; <br>б) делитель b, если а = 257, q = 28, r = 5; <br>в) неполное частное q, если а = 597, b = 12, r = 9. <br>
| + | 677. Запишите формулу для вычисления периметра прямоугольника, если буквами а и b обозначены длины сторон прямоугольника, а буквой Р его периметр. Вычислите по этой формуле: |
| | | |
- | 680. С одной станции в противоположных направлениях вышли два поезда в одно и то же время. Скорость одного поезда 50 км/ч, а скорость другого поезда 70 км/ч. Какое расстояние будет между ними через t часов после отправления в путь? Запишите ответ в виде формулы и упростите ее. Что означает число 120 в получившейся формуле? <br>
| + | а) '''[[Прямокутник, квадрат, їх периметри. Презентація уроку|периметр]]''' Р прямоугольника, если его стороны а = 4 дм и b = 3 дм; <br>б) сторону прямоугольника, если его периметр равен 30 см, а другая сторона — 7 см. <br> |
| | | |
- | 681. Расстояние между двумя городами 600 км. Навстречу друг другу из этих городов вышли одновременно две автомашины. Одна имеет скорость 60 км/ч, а другая — 40 км/ч. Чему равно расстояние между машинами через t часов после выезда? Запишите ответ в виде формулы и упростите ее. Какой смысл имеет число 100 в получившейся формуле? <br>
| + | 678. Запишите формулу для вычисления периметра Р квадрата, сторона которого а. Вычислите по этой формуле: |
| | | |
- | 682. Первая черепаха догоняет вторую. Скорость первой черепахи 130 см в минуту, а скорость второй — 97 см в минуту. Сейчас расстояние между ними 198 см. Чему будет равно расстояние между черепахами через t мин? Запишите ответ в виде формулы и упростите ее. Какой смысл имеет число 33 в этой формуле? Через сколько минут первая черепаха догонит вторую? <br>
| + | а) периметр квадрата со стороной 9 см; <br>б) сторону квадрата, периметр которого 64 м. <br> |
| | | |
- | 683. Расстояние между селами Ивановка и Дятьково равно 90 км. Из Ивановки в Дятьково выехал велосипедист со скоростью 10 км/ч. Наишите формулу, выражающую расстояние s от велосипедиста до Дятьково через t часов после его выезда. <br>
| + | 679. Запишите в виде формулы правило нахождения делимого а по делителю b, неполному частному q и остатку r. По этой формуле найдите: |
| | | |
- | 684. Вычислите устно: <br>
| + | а) делимое а, если неполное частное равно 15, делитель — 7 и остаток — 4; <br>б) делитель b, если а = 257, q = 28, r = 5; <br>в) неполное частное q, если а = 597, b = 12, r = 9. <br> |
| | | |
- | [[Image:16-06-7.jpg]]<br><br>685. Восстановите цепочку вычислений: <br> | + | 680. С одной станции в противоположных направлениях вышли два поезда в одно и то же время. Скорость одного поезда 50 км/ч, а скорость другого поезда 70 км/ч. Какое расстояние будет между ними через t часов после отправления в путь? Запишите ответ в виде формулы и упростите ее. Что означает '''[[Додавання і віднімання натуральних чисел|число]]''' 120 в получившейся формуле? <br> |
| | | |
- | [[Image:16-06-8.jpg]]<br><br>686. Найдите квадраты чисел 2; 5; 7; 8; 10; 20. Найдите кубы чисел 2; 3; 5; 10; 30. <br>
| + | 681. Расстояние между двумя городами 600 км. Навстречу друг другу из этих городов вышли одновременно две автомашины. Одна имеет скорость 60 км/ч, а другая — 40 км/ч. Чему равно расстояние между машинами через t часов после выезда? Запишите ответ в виде формулы и упростите ее. Какой смысл имеет число 100 в получившейся формуле? <br> |
| | | |
- | 687. Квадрат какого числа равен 4; 16; 36; 81; 900? Куб какого числа равен 1; 8; 64; 125; 27 000? <br>
| + | 682. Первая черепаха догоняет вторую. Скорость первой черепахи 130 см в минуту, а скорость второй — 97 см в минуту. Сейчас расстояние между ними 198 см. Чему будет равно расстояние между черепахами через t мин? Запишите ответ в виде формулы и упростите ее. Какой смысл имеет число 33 в этой формуле? Через сколько минут первая черепаха догонит вторую? <br> |
| | | |
- | 688. Вычислите наиболее простым способом: <br>
| + | 683. Расстояние между селами Ивановка и Дятьково равно 90 км. Из Ивановки в Дятьково выехал велосипедист со скоростью 10 км/ч. Наишите формулу, выражающую расстояние s от велосипедиста до Дятьково через t часов после его выезда. <br> |
| | | |
- | а) 4 • 19 • 25; г) 50 • 75 • 2; <br>б) 8 • 15 • 125; д) 16 • 47 • 125; <br>в) 250 • 35 • 8; е) 40 • 8 • 25 • 125. <br>
| + | 684. Вычислите устно: <br> |
| | | |
- | 689. Изменится ли частное двух чисел, если: <br>
| + | [[Image:16-06-7.jpg|480px|Задание]]<br><br>685. Восстановите цепочку вычислений: <br> |
| | | |
- | а) делимое увеличить в 2 раза; в 3 раза; <br>б) делимое и делитель увеличить в одинаковое число раз? <br>Приведите примеры. <br>
| + | [[Image:16-06-8.jpg|480px|Задание]]<br><br>686. Найдите '''[[Множення натуральних чисел. Квадрат і куб числа. Презентація уроку|квадраты чисел]]''' 2; 5; 7; 8; 10; 20. Найдите кубы чисел 2; 3; 5; 10; 30. <br> |
| | | |
- | 690. Расскажите, в каком порядке надо выполнять действия при нахождении значения выражения: <br>
| + | 687. Квадрат какого числа равен 4; 16; 36; 81; 900? Куб какого числа равен 1; 8; 64; 125; 27 000? <br> |
| | | |
- | а) 23 • 82- 15 • 33+ 1734 : 17; <br>б) 5 • 113-4 • (76 + 132- 5). <br>
| + | 688. Вычислите наиболее простым способом: <br> |
| | | |
- | 691. Попробуйте найти число, квадрат которого оканчивается цифрой 0; 6; 5; 7.Какой цифрой может оканчиваться квадрат числа? куб числа? <br>692. Машина двигалась 4 ч со скоростью а км/ч и 3 ч со скоростью b км/ч. Какой путь прошла машина за эти 7 часов? <br>Составьте выражение для решения задачи и найдите его значение при: <br>а = 40, b = 30; а = 30, b = 40; а = 60, b = 70. | + | а) 4 • 19 • 25; г) 50 • 75 • 2; <br>б) 8 • 15 • 125; д) 16 • 47 • 125; <br>в) 250 • 35 • 8; е) 40 • 8 • 25 • 125. <br> |
| + | |
| + | 689. Изменится ли частное двух чисел, если: <br> |
| + | |
| + | а) делимое увеличить в 2 раза; в 3 раза; <br>б) делимое и делитель увеличить в одинаковое число раз? |
| + | |
| + | Приведите примеры. <br> |
| + | |
| + | 690. Расскажите, в каком порядке надо выполнять действия при нахождении значения выражения: <br> |
| + | |
| + | а) 23 • 82- 15 • 33+ 1734 : 17; <br>б) 5 • 113-4 • (76 + 132- 5). <br> |
| + | |
| + | 691. Попробуйте найти число, квадрат которого оканчивается цифрой 0; 6; 5; 7.Какой цифрой может оканчиваться квадрат числа? куб числа? |
| + | |
| + | 692. Машина двигалась 4 ч со скоростью а км/ч и 3 ч со скоростью b км/ч. Какой путь прошла машина за эти 7 часов? |
| + | |
| + | Составьте '''[[Повторення таблиць додавання і віднімання. Складання виразів за текстовим формулюванням|выражение]]''' для решения задачи и найдите его значение при: |
| + | |
| + | а = 40, b = 30; а = 30, b = 40; а = 60, b = 70. |
| | | |
| 693. Найдите значение выражения: | | 693. Найдите значение выражения: |
| | | |
- | а) З2 + 42; в) (92 - 42) : (9 - 4); <br>б) (42 + 1)2; г) (83 + 73) : (82 - 72). | + | а) З2 + 42; в) (92 - 42) : (9 - 4); <br>б) (42 + 1)2; г) (83 + 73) : (82 - 72). |
| | | |
- | 694. Семье, состоящей из бабушки, папы, мамы, дочери и сына, подарили 5 разных чашек. Сколькими способами можно разделить чашки между членами <br>семьи? <br>Решение. У первого члена семьи (например, бабушки) есть 5 вариантов выбора, у следующего (пусть это будет папа) остается 4 варианта выбора, следующий (например, мама) будет выбирать уже из 3 чашек, следующий — из двух, последний же получает одну оставшуюся чашку. Покажем эти <br>способы на схеме. | + | 694. Семье, состоящей из бабушки, папы, мамы, дочери и сына, подарили 5 разных чашек. Сколькими способами можно разделить чашки между членами семьи? |
| | | |
- | [[Image:16-06-9.jpg]]<br><br>Получили, что каждому выбору чашки бабушкой соответствует четыре возможных выбора папы, т. е. всего 5 • 4 способов. После того как папа выбрал <br>чашку, у мамы есть три варианта выбора, у дочери — два, у сына — один, т. е. всего 3-2-1 способов. Окончательно получаем, что для решения задачи <br>надо найти произведение 5 • 4 • 3 • 2 -1. Заметим, что получили произведение всех натуральных чисел от 1 до 5. Такие произведения записывают короче:
| + | '''Решение'''. У первого члена семьи (например, бабушки) есть 5 вариантов выбора, у следующего (пусть это будет папа) остается 4 варианта выбора, следующий (например, мама) будет выбирать уже из 3 чашек, следующий — из двух, последний же получает одну оставшуюся чашку. Покажем эти способы на [http://xvatit.com/it/fishki-ot-itshki/ '''схеме''']. |
| | | |
- | 5 • 4 • 3 • 2 • 1 = 5! (читают: «пять факториал»). <br>Итак, ответ задачи: 5! = 120, т. е. чашки между членами семьи можно распределить ста двадцатью способами.
| + | [[Image:16-06-9.jpg|550px|Задание]]<br><br>Получили, что каждому выбору чашки бабушкой соответствует четыре возможных выбора папы, т. е. всего 5 • 4 способов. После того как папа выбрал чашку, у мамы есть три варианта выбора, у дочери — два, у сына — один, т. е. всего 3-2-1 способов. Окончательно получаем, что для решения задачи надо найти произведение 5 • 4 • 3 • 2 -1. Заметим, что получили произведение всех натуральных чисел от 1 до 5. Такие произведения записывают короче: |
| | | |
- | 695. Толя начал читать книгу, когда Сережа прочитал уже 24 страницы такой же книги. Догонит ли Толя Сережу через 5 дней, если будет читать в день — <br>18 страниц, а Сережа — 12? | + | 5 • 4 • 3 • 2 • 1 = 5! (читают: «пять факториал»). |
| + | |
| + | Итак, ответ задачи: 5! = 120, т. е. чашки между членами семьи можно распределить ста двадцатью способами. |
| + | |
| + | 695. Толя начал читать книгу, когда Сережа прочитал уже 24 страницы такой же книги. Догонит ли Толя Сережу через 5 дней, если будет читать в день — 18 страниц, а Сережа — 12? |
| | | |
| 696. Начертите координатный луч. Отметьте на нем точки А(5), В(7), С(0) и 0(3). Чему равна длина (в единичных отрезках) отрезков АВ, CD, AD? | | 696. Начертите координатный луч. Отметьте на нем точки А(5), В(7), С(0) и 0(3). Чему равна длина (в единичных отрезках) отрезков АВ, CD, AD? |
Строка 79: |
Строка 111: |
| 697. Через точки Р и К проведите прямую и отметьте на ней точки С и D так, чтобы точка D лежала между Р и /С, а точка Р — между С и D. | | 697. Через точки Р и К проведите прямую и отметьте на ней точки С и D так, чтобы точка D лежала между Р и /С, а точка Р — между С и D. |
| | | |
- | 698. Докажите, что: <br>а) 600 < 23 • 35 < 1200; | + | 698. Докажите, что: |
| + | |
| + | а) 600 < 23 • 35 < 1200; |
| | | |
| б) 2400 < 47 • 62 < 3500. | | б) 2400 < 47 • 62 < 3500. |
| | | |
- | 699. Решите задачу: <br>1) Бронза содержит (по массе) 41 часть меди, 8 частей олова и 1 часть цинка. Какова масса куска бронзы, если в ней олова меньше, чем меди, на 132 г? <br>2) Дюралюминий — сплав, состоящий из 83 частей алюминия, 5 частей меди, 1 части марганца и 1 части магния (по массе). Какова масса куска дюралюминия, если в нем меди больше, чем магния, на 84 г? | + | 699. Решите задачу: |
| | | |
- | 700. Массу М товара с упаковкой (ее называют массой брутто) определяют так: вычисляют массу товара (она называется массой нетто) и прибавляют к ней массу р упаковки. Запишите это правило в виде формулы, если масса одного изделия т и в упаковке п изделий. Найдите по этой формуле массу брутто ящика чая, в котором 50 пачек чая, по 100 г каждая, а масса ящика 1 кг.
| + | 1) Бронза содержит (по массе) 41 часть меди, 8 частей олова и 1 часть цинка. Какова масса куска бронзы, если в ней олова меньше, чем меди, на 132 г? |
| | | |
- | 701. Найдите по формуле пути: <br>а) значение s, если v = 12 км/ч, t — 3 ч; <br>б) значение t, если s = 180 м, v = 15 м/с. | + | 2) Дюралюминий — сплав, состоящий из 83 частей алюминия, 5 частей меди, 1 части марганца и 1 части магния (по массе). Какова масса куска дюралюминия, если в нем меди больше, чем магния, на 84 г? |
| + | |
| + | 700. Массу М товара с упаковкой (ее называют массой брутто) определяют так: вычисляют массу товара (она называется массой нетто) и прибавляют к ней массу р упаковки. Запишите это правило в виде формулы, если масса одного изделия т и в упаковке n изделий. Найдите по этой формуле массу брутто ящика чая, в котором 50 пачек чая, по 100 г каждая, а масса ящика 1 кг. |
| + | |
| + | 701. Найдите по формуле пути: |
| + | |
| + | а) значение s, если v = 12 км/ч, t — 3 ч; <br>б) значение t, если s = 180 м, v = 15 м/с. |
| | | |
| 702. Найдите по формуле для нахождения периметра прямоугольника: | | 702. Найдите по формуле для нахождения периметра прямоугольника: |
Строка 103: |
Строка 143: |
| 707. Решите уравнение: | | 707. Решите уравнение: |
| | | |
- | а) (Зх + bх) • 18 = 144; <br>б) (7у - Зу) : 8 = 17; | + | а) (Зх + bх) • 18 = 144; <br>б) (7у - Зу) : 8 = 17; |
| | | |
- | в) (6а + а) : 13 = 14; <br>г) 48 : (9b - b) = 2. | + | в) (6а + а) : 13 = 14; <br>г) 48 : (9b - b) = 2. |
| | | |
| 708. Выполните действия: | | 708. Выполните действия: |
| | | |
- | а) 183 340 : 89 • 104; <br>б) 102 720 : 96 • 203. <br><br> | + | а) 183 340 : 89 • 104; <br>б) 102 720 : 96 • 203. |
| | | |
| <br> ''Н.Я. ВИЛЕНКИН, B. И. ЖОХОВ, А. С. ЧЕСНОКОВ, C. И. ШВАРЦБУРД, Математика 5 класс, Учебник для общеобразовательных учреждений'' <br> | | <br> ''Н.Я. ВИЛЕНКИН, B. И. ЖОХОВ, А. С. ЧЕСНОКОВ, C. И. ШВАРЦБУРД, Математика 5 класс, Учебник для общеобразовательных учреждений'' <br> |
| + | |
| + | |
| | | |
| <sub>Математика для 5 класса, учебники и книги по математике [[Математика|скачать]], библиотека [[Гипермаркет знаний - первый в мире!|онлайн]] </sub> | | <sub>Математика для 5 класса, учебники и книги по математике [[Математика|скачать]], библиотека [[Гипермаркет знаний - первый в мире!|онлайн]] </sub> |
Строка 118: |
Строка 160: |
| | | |
| '''<u>Содержание урока</u>''' | | '''<u>Содержание урока</u>''' |
- | <u></u>'''[[Image:1236084776 kr.jpg|10x10px]] конспект урока ''' | + | <u></u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] конспект урока ''' |
- | [[Image:1236084776 kr.jpg|10x10px]] опорный каркас | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] опорный каркас |
- | [[Image:1236084776 kr.jpg|10x10px]] презентация урока | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] презентация урока |
- | [[Image:1236084776 kr.jpg|10x10px]] акселеративные методы | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] акселеративные методы |
- | [[Image:1236084776 kr.jpg|10x10px]] интерактивные технологии | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] интерактивные технологии |
| | | |
| '''<u>Практика</u>''' | | '''<u>Практика</u>''' |
- | [[Image:1236084776 kr.jpg|10x10px]] задачи и упражнения | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] задачи и упражнения |
- | [[Image:1236084776 kr.jpg|10x10px]] самопроверка | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] самопроверка |
- | [[Image:1236084776 kr.jpg|10x10px]] практикумы, тренинги, кейсы, квесты | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] практикумы, тренинги, кейсы, квесты |
- | [[Image:1236084776 kr.jpg|10x10px]] домашние задания | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] домашние задания |
- | [[Image:1236084776 kr.jpg|10x10px]] дискуссионные вопросы | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] дискуссионные вопросы |
- | [[Image:1236084776 kr.jpg|10x10px]] риторические вопросы от учеников | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] риторические вопросы от учеников |
- |
| + | |
| '''<u>Иллюстрации</u>''' | | '''<u>Иллюстрации</u>''' |
- | <u></u>'''[[Image:1236084776 kr.jpg|10x10px]] аудио-, видеоклипы и мультимедиа ''' | + | <u></u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] аудио-, видеоклипы и мультимедиа ''' |
- | [[Image:1236084776 kr.jpg|10x10px]] фотографии, картинки | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] фотографии, картинки |
- | [[Image:1236084776 kr.jpg|10x10px]] графики, таблицы, схемы | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] графики, таблицы, схемы |
- | [[Image:1236084776 kr.jpg|10x10px]] юмор, анекдоты, приколы, комиксы | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] юмор, анекдоты, приколы, комиксы |
- | [[Image:1236084776 kr.jpg|10x10px]] притчи, поговорки, кроссворды, цитаты | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] притчи, поговорки, кроссворды, цитаты |
| | | |
| '''<u>Дополнения</u>''' | | '''<u>Дополнения</u>''' |
- | <u></u>'''[[Image:1236084776 kr.jpg|10x10px]] рефераты''' | + | <u></u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] рефераты''' |
- | [[Image:1236084776 kr.jpg|10x10px]] статьи | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] статьи |
- | [[Image:1236084776 kr.jpg|10x10px]] фишки для любознательных | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] фишки для любознательных |
- | [[Image:1236084776 kr.jpg|10x10px]] шпаргалки | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] шпаргалки |
- | [[Image:1236084776 kr.jpg|10x10px]] учебники основные и дополнительные | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] учебники основные и дополнительные |
- | [[Image:1236084776 kr.jpg|10x10px]] словарь терминов | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] словарь терминов |
- | [[Image:1236084776 kr.jpg|10x10px]] прочие | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] прочие |
| '''<u></u>''' | | '''<u></u>''' |
| <u>Совершенствование учебников и уроков | | <u>Совершенствование учебников и уроков |
- | </u>'''[[Image:1236084776 kr.jpg|10x10px]] исправление ошибок в учебнике''' | + | </u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] исправление ошибок в учебнике''' |
- | [[Image:1236084776 kr.jpg|10x10px]] обновление фрагмента в учебнике | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] обновление фрагмента в учебнике |
- | [[Image:1236084776 kr.jpg|10x10px]] элементы новаторства на уроке | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] элементы новаторства на уроке |
- | [[Image:1236084776 kr.jpg|10x10px]] замена устаревших знаний новыми | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] замена устаревших знаний новыми |
- |
| + | |
| '''<u>Только для учителей</u>''' | | '''<u>Только для учителей</u>''' |
- | <u></u>'''[[Image:1236084776 kr.jpg|10x10px]] идеальные уроки ''' | + | <u></u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] идеальные уроки ''' |
- | [[Image:1236084776 kr.jpg|10x10px]] календарный план на год | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] календарный план на год |
- | [[Image:1236084776 kr.jpg|10x10px]] методические рекомендации | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] методические рекомендации |
- | [[Image:1236084776 kr.jpg|10x10px]] программы | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] программы |
- | [[Image:1236084776 kr.jpg|10x10px]] обсуждения | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] обсуждения |
| | | |
| | | |
Текущая версия на 09:00, 5 октября 2012
Гипермаркет знаний>>Математика>>Математика 5 класс>>Математика:Формулы
Формулы
Задача 1. Велосипедист едет со скоростью 15 км/ч. Какое расстояние он проедет за 4 ч?
Решение. Чтобы узнать, сколько километров проедет велосипедист, надо умножить его скорость на время пути, то есть найти произведение 15-4. Получаем, что путь равен 60 км.
Запишем правило нахождения пути по скорости и времени движения в буквенном виде. Обозначим путь буквой s, скорость — буквой v и время — буквой t. Получим равенство s = vt.
Это равенство называют формулой пути.
Запись какого-нибудь правила с помощью букв называют формулой.
По формуле пути можно решать различные задачи.
Задача 2. Автомобиль движется со скоростью 60 км/ч. За какое время он пройдет путь в 600 км? Решение. Заменим в формуле s = vt буквы s и v их значениями: s = 600, v = 60.
Получим уравнение: 600 = 60t.
Из него находим, что t = 600 : 60, то есть t = 10. Значит, чтобы проехать 600 км, автомобиль должен двигаться 10 ч.
Задача 3. С какой скоростью должен идти человек, чтобы пройти 24 км за 4 ч?
Решение. Заменим в формуле s = vt буквы s и t их значениями: s = 24, t = 4. Получим уравнение: 24 = v • 4, то есть 24 = 4v. Решив уравнение, получим: v = 6. Значит, человек должен идти со скоростью 6 км/ч.
Запишите формулу пути и расскажите, что означают входящие в нее буквы.
674. Найдите по формуле s = vt путь, пройденный: а) со скоростью 96 м/мин за 25 мин; б) со скоростью 7 км/ч за 6 ч.
675. Найдите по формуле пути значение скорости v если:
а) t = 12 ч, s = 240 км; б) t = 5 с, s = 15 м.
676. Найдите по формуле пути значение времени t, если:
а) s = 64 км, и = 8 км/с; б) s = 132 км, v = 12 км/ч.
677. Запишите формулу для вычисления периметра прямоугольника, если буквами а и b обозначены длины сторон прямоугольника, а буквой Р его периметр. Вычислите по этой формуле:
а) периметр Р прямоугольника, если его стороны а = 4 дм и b = 3 дм; б) сторону прямоугольника, если его периметр равен 30 см, а другая сторона — 7 см.
678. Запишите формулу для вычисления периметра Р квадрата, сторона которого а. Вычислите по этой формуле:
а) периметр квадрата со стороной 9 см; б) сторону квадрата, периметр которого 64 м.
679. Запишите в виде формулы правило нахождения делимого а по делителю b, неполному частному q и остатку r. По этой формуле найдите:
а) делимое а, если неполное частное равно 15, делитель — 7 и остаток — 4; б) делитель b, если а = 257, q = 28, r = 5; в) неполное частное q, если а = 597, b = 12, r = 9.
680. С одной станции в противоположных направлениях вышли два поезда в одно и то же время. Скорость одного поезда 50 км/ч, а скорость другого поезда 70 км/ч. Какое расстояние будет между ними через t часов после отправления в путь? Запишите ответ в виде формулы и упростите ее. Что означает число 120 в получившейся формуле?
681. Расстояние между двумя городами 600 км. Навстречу друг другу из этих городов вышли одновременно две автомашины. Одна имеет скорость 60 км/ч, а другая — 40 км/ч. Чему равно расстояние между машинами через t часов после выезда? Запишите ответ в виде формулы и упростите ее. Какой смысл имеет число 100 в получившейся формуле?
682. Первая черепаха догоняет вторую. Скорость первой черепахи 130 см в минуту, а скорость второй — 97 см в минуту. Сейчас расстояние между ними 198 см. Чему будет равно расстояние между черепахами через t мин? Запишите ответ в виде формулы и упростите ее. Какой смысл имеет число 33 в этой формуле? Через сколько минут первая черепаха догонит вторую?
683. Расстояние между селами Ивановка и Дятьково равно 90 км. Из Ивановки в Дятьково выехал велосипедист со скоростью 10 км/ч. Наишите формулу, выражающую расстояние s от велосипедиста до Дятьково через t часов после его выезда.
684. Вычислите устно:
685. Восстановите цепочку вычислений:
686. Найдите квадраты чисел 2; 5; 7; 8; 10; 20. Найдите кубы чисел 2; 3; 5; 10; 30.
687. Квадрат какого числа равен 4; 16; 36; 81; 900? Куб какого числа равен 1; 8; 64; 125; 27 000?
688. Вычислите наиболее простым способом:
а) 4 • 19 • 25; г) 50 • 75 • 2; б) 8 • 15 • 125; д) 16 • 47 • 125; в) 250 • 35 • 8; е) 40 • 8 • 25 • 125.
689. Изменится ли частное двух чисел, если:
а) делимое увеличить в 2 раза; в 3 раза; б) делимое и делитель увеличить в одинаковое число раз?
Приведите примеры.
690. Расскажите, в каком порядке надо выполнять действия при нахождении значения выражения:
а) 23 • 82- 15 • 33+ 1734 : 17; б) 5 • 113-4 • (76 + 132- 5).
691. Попробуйте найти число, квадрат которого оканчивается цифрой 0; 6; 5; 7.Какой цифрой может оканчиваться квадрат числа? куб числа?
692. Машина двигалась 4 ч со скоростью а км/ч и 3 ч со скоростью b км/ч. Какой путь прошла машина за эти 7 часов?
Составьте выражение для решения задачи и найдите его значение при:
а = 40, b = 30; а = 30, b = 40; а = 60, b = 70.
693. Найдите значение выражения:
а) З2 + 42; в) (92 - 42) : (9 - 4); б) (42 + 1)2; г) (83 + 73) : (82 - 72).
694. Семье, состоящей из бабушки, папы, мамы, дочери и сына, подарили 5 разных чашек. Сколькими способами можно разделить чашки между членами семьи?
Решение. У первого члена семьи (например, бабушки) есть 5 вариантов выбора, у следующего (пусть это будет папа) остается 4 варианта выбора, следующий (например, мама) будет выбирать уже из 3 чашек, следующий — из двух, последний же получает одну оставшуюся чашку. Покажем эти способы на схеме.
Получили, что каждому выбору чашки бабушкой соответствует четыре возможных выбора папы, т. е. всего 5 • 4 способов. После того как папа выбрал чашку, у мамы есть три варианта выбора, у дочери — два, у сына — один, т. е. всего 3-2-1 способов. Окончательно получаем, что для решения задачи надо найти произведение 5 • 4 • 3 • 2 -1. Заметим, что получили произведение всех натуральных чисел от 1 до 5. Такие произведения записывают короче:
5 • 4 • 3 • 2 • 1 = 5! (читают: «пять факториал»).
Итак, ответ задачи: 5! = 120, т. е. чашки между членами семьи можно распределить ста двадцатью способами.
695. Толя начал читать книгу, когда Сережа прочитал уже 24 страницы такой же книги. Догонит ли Толя Сережу через 5 дней, если будет читать в день — 18 страниц, а Сережа — 12?
696. Начертите координатный луч. Отметьте на нем точки А(5), В(7), С(0) и 0(3). Чему равна длина (в единичных отрезках) отрезков АВ, CD, AD?
697. Через точки Р и К проведите прямую и отметьте на ней точки С и D так, чтобы точка D лежала между Р и /С, а точка Р — между С и D.
698. Докажите, что:
а) 600 < 23 • 35 < 1200;
б) 2400 < 47 • 62 < 3500.
699. Решите задачу:
1) Бронза содержит (по массе) 41 часть меди, 8 частей олова и 1 часть цинка. Какова масса куска бронзы, если в ней олова меньше, чем меди, на 132 г?
2) Дюралюминий — сплав, состоящий из 83 частей алюминия, 5 частей меди, 1 части марганца и 1 части магния (по массе). Какова масса куска дюралюминия, если в нем меди больше, чем магния, на 84 г?
700. Массу М товара с упаковкой (ее называют массой брутто) определяют так: вычисляют массу товара (она называется массой нетто) и прибавляют к ней массу р упаковки. Запишите это правило в виде формулы, если масса одного изделия т и в упаковке n изделий. Найдите по этой формуле массу брутто ящика чая, в котором 50 пачек чая, по 100 г каждая, а масса ящика 1 кг.
701. Найдите по формуле пути:
а) значение s, если v = 12 км/ч, t — 3 ч; б) значение t, если s = 180 м, v = 15 м/с.
702. Найдите по формуле для нахождения периметра прямоугольника:
а) периметр Р, если а = 15 см, b = 25 см; б) сторону а, если Р = 122 м, b = 34 м.
703. Периметр квадрата 144 м. Найдите его сторону.
704. Сплав состоит из 19 частей алюминия и 2 частей магния (по массе). Какова масса сплава, если в нем магния на 34 кг меньше, чем алюминия?
705. Митя собрал в 3 раза больше грибов, чем Петя. Подсчитав все собранные грибы, они увидели, что набрали 48 подосиновиков и подберезовиков, а белых грибов — 8. Сколько грибов собрал каждый из мальчиков?
706. Отец старше сына на 20 лет, а сын моложе отца в 5 раз. Сколько лет отцу и сколько лет сыну?
707. Решите уравнение:
а) (Зх + bх) • 18 = 144; б) (7у - Зу) : 8 = 17;
в) (6а + а) : 13 = 14; г) 48 : (9b - b) = 2.
708. Выполните действия:
а) 183 340 : 89 • 104; б) 102 720 : 96 • 203.
Н.Я. ВИЛЕНКИН, B. И. ЖОХОВ, А. С. ЧЕСНОКОВ, C. И. ШВАРЦБУРД, Математика 5 класс, Учебник для общеобразовательных учреждений
Математика для 5 класса, учебники и книги по математике скачать, библиотека онлайн
Содержание урока
конспект урока
опорный каркас
презентация урока
акселеративные методы
интерактивные технологии
Практика
задачи и упражнения
самопроверка
практикумы, тренинги, кейсы, квесты
домашние задания
дискуссионные вопросы
риторические вопросы от учеников
Иллюстрации
аудио-, видеоклипы и мультимедиа
фотографии, картинки
графики, таблицы, схемы
юмор, анекдоты, приколы, комиксы
притчи, поговорки, кроссворды, цитаты
Дополнения
рефераты
статьи
фишки для любознательных
шпаргалки
учебники основные и дополнительные
словарь терминов
прочие
Совершенствование учебников и уроков
исправление ошибок в учебнике
обновление фрагмента в учебнике
элементы новаторства на уроке
замена устаревших знаний новыми
Только для учителей
идеальные уроки
календарный план на год
методические рекомендации
программы
обсуждения
Интегрированные уроки
Если у вас есть исправления или предложения к данному уроку, напишите нам.
Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум.
|