|   |   | 
| (2 промежуточные версии не показаны) | 
| Строка 1: | Строка 1: | 
| - | <metakeywords>Гипермаркет Знаний - первый в мире!, Гипермаркет Знаний, Математика, 8 класс, Алгебра, урок, на Тему, Сонаправленность полупрямых</metakeywords>   | + | <metakeywords>Гипермаркет Знаний - первый в мире!, Гипермаркет Знаний, Математика, 8 класс, Алгебра, урок, на Тему, Сонаправленность полупрямых, полупрямые, параллельный перенос, формулами</metakeywords>   | 
|  |  |  |  | 
|  | '''[[Гипермаркет знаний - первый в мире!|Гипермаркет знаний]]>>[[Математика|Математика]]>>[[Математика 8 класс|Математика 8 класс]]>>Математика: Сонаправленность полупрямых'''   |  | '''[[Гипермаркет знаний - первый в мире!|Гипермаркет знаний]]>>[[Математика|Математика]]>>[[Математика 8 класс|Математика 8 класс]]>>Математика: Сонаправленность полупрямых'''   | 
|  | + |  | 
|  | + | <br>'''Сонаправленность полупрямых''' <br>   <br> Две [[Полупрямая|полупрямые]] называются одинаково направленными или сонаправленными, если они совмещаются параллельным переносом. То есть существует параллельный перенос, который переводит одну полупрямую в другую.  | 
|  | + |  | 
|  | + | Если полупрямые а и b одинаково направлены и полупрямые b и с одинаково направлены, то полупрямые а и с тоже одинаково направлены (рис. 203).  | 
|  | + |  | 
|  | + | Действительно, пусть [[Ілюстрації: Поворот. Паралельне перенесення|параллельный перенос]], задаваемый формулами  | 
|  | + |  | 
|  | + | х'=х + m, у'=-у + n,    (*)  | 
|  | + |  | 
|  | + | переводит полупрямую а в полупрямую b, а параллельный перенос, задаваемый формулами  | 
|  | + |  | 
|  | + | х"=х' + m<sub>1</sub> у" = у' + n<sub>1</sub>    (**)  | 
|  | + |  | 
|  | + | переводит полупрямую b в полупрямую с.  | 
|  | + |  | 
|  | + | Рассмотрим параллельный перенос, задаваемый [[Конспект уроку на тему «Формула коренів квадратного рівняння»|формулами]]  | 
|  | + |  | 
|  | + | х" = х + m + m<sub>1</sub>, у" = у + n + n<sub>1</sub>.    (***) <br>   <br> Утверждаем, что этот параллельный перенос переводит полупрямую с в полупрямую с. Докажем это. | 
|  | + |  | 
|  | + | [[Image:22-06-152.jpg|480px|Сонаправленность полупрямых ]]<br>   <br> Пусть (х; у) — произвольная точка полупрямой о. Согласно формулам (*) точка 9х + m; у + n) принадлежит полупрямой b. Так как точка (х+m; у + n) принадлежит полупрямой b, то согласно формулам (**) точка (x + m + m<sub>1</sub>; у + n + n<sub>1</sub>) принадлежит полупрямой с. Таким образом, параллельный перенос, задаваемый формулами (***), переводит полупрямую о в полупрямую с. А это значит, что полупрямые о и с одинаково направлены, что и требовалось доказать.  | 
|  | + |  | 
|  | + | Две полупрямые называются противоположно направленными, если каждая из них одинаково направлена с полупрямой, дополнительной к другой (рис. 204).  | 
|  | + |  | 
|  | + | '''Задача (32)'''. Прямые АВ и CD параллельны. Точки А и D лежат по одну сторону секущей ВС. Докажите, что лучи ВА и CD одинаково направлены.   <br><br> [[Image:22-06-153.jpg|320px|Сонаправленность полупрямых ]]  <br><br> '''Решение'''. Подвергнем луч CD параллельному переносу, при котором точка С переходит в точку В (рис. 205). При этом прямая CD совместится с прямой ВА. Точка D, смещаясь по прямой, параллельной СВ, остается в той же полуплоскости относительно прямой ВС. Поэтому луч CD совместится с лучом ВА, а значит, эти лучи одинаково направлены. <br> <br> ''А. В. Погорелов, [http://xvatit.com/vuzi/ Геометрия] для 7-11 классов, Учебник для общеобразовательных учреждений'' <br>  | 
|  |  |  |  | 
|  |  |  |  | 
| - |                              '''СОНАПРАВЛЕННОСТЬ ПОЛУПРЯМЫХ'''
 |  | 
| - | <br>
 |  | 
| - |  
 |  | 
| - | <br>
 |  | 
| - | Две полупрямые называются одинаково направленными или сонаправленными, если они совмещаются параллельным переносом. То есть существует параллельный перенос, который переводит одну полупрямую в другую.
 |  | 
| - | <br>
 |  | 
| - | Если полупрямые а и b одинаково направлены и полупрямые Ь и с одинаково направлены, то полупрямые а и с тоже одинаково направлены (рис. 203).
 |  | 
| - | <br>
 |  | 
| - | Действительно, пусть параллельный перенос, задаваемый формулами
 |  | 
| - | <br>
 |  | 
| - | х'=х + т, у'=-у + п,    (*)
 |  | 
| - | <br>
 |  | 
| - | переводит полупрямую а в полупрямую Ь, а параллельный перенос, задаваемый формулами
 |  | 
| - | <br>
 |  | 
| - | х"^х' + ти у" = у' + пи    (**)
 |  | 
| - | <br>
 |  | 
| - | переводит полупрямую Ь в полупрямую с.
 |  | 
| - | <br>
 |  | 
| - | Рассмотрим параллельный перенос, задаваемый формулами
 |  | 
| - | <br>
 |  | 
| - | х" = х-\-т + т1, у" = у + п-\-п\.    (***)
 |  | 
| - | <br>
 |  | 
| - |  
 |  | 
| - | <br>
 |  | 
| - | Утверждаем, что этот параллельный перенос переводит полупрямую с в полупрямую с. Докажем это.
 |  | 
| - | <br>
 |  | 
| - | а
 |  | 
| - | <br>
 |  | 
| - |  
 |  | 
| - | <br>
 |  | 
| - | Пусть {х\ у) — произвольная точка полупрямой о. Согласно формулам (*) точка {х-\-т; у + п) принадлежит полупрямой Ь. Так как точка {х+т; у + п) принадлежит полупрямой Ь, то согласно формулам (**) точка (дс + т + т,; у-\-п-\-П[) принадлежит полупрямой с. Таким образом, параллельный перенос, задаваемый формулами (***), переводит полупрямую о в полупрямую с. А это значит, что полупрямые о и с одинаково направлены, что и требовалось доказать.
 |  | 
| - | <br>
 |  | 
| - | Две полупрямые называются противоположно направленными, если каждая из них одинаково направлена с полупрямой, дополнительной к другой (рис. 204).
 |  | 
| - | <br>
 |  | 
| - | Задача (32). Прямые АВ и CD параллельны. Точки А и D лежат по одну сторону секущей ВС. Докажите, что лучи ВА и CD одинаково направлены.
 |  | 
| - | <br>
 |  | 
| - |  
 |  | 
| - | <br><br>
 |  | 
| - | Рис. 205
 |  | 
| - | <br>
 |  | 
| - |  
 |  | 
| - | <br><br>
 |  | 
| - | Решение. Подвергнем луч CD параллельному переносу, при котором точка С переходит в точку В (рис. 205). При этом прямая CD совместится с прямой ВА. Точка D, смещаясь по прямой, параллельной СВ, остается в той же полуплоскости относительно прямой ВС. Поэтому луч CD совместится с лучом ВА, а значит, эти лучи одинаково направлены.
 |  | 
| - | <br><br><br>
 |  | 
| - | <br> ''А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений'' <br> 
 |  | 
|  |  |  |  | 
|  | <sub>Учебники по всему предметам [[Математика|скачать]], разработка планов уроков для учителей, Математика для 8 класса [[Гипермаркет знаний - первый в мире!|онлайн]]</sub>   |  | <sub>Учебники по всему предметам [[Математика|скачать]], разработка планов уроков для учителей, Математика для 8 класса [[Гипермаркет знаний - первый в мире!|онлайн]]</sub>   | 
| Строка 55: | Строка 34: | 
|  |  |  |  | 
|  |   '''<u>Содержание урока</u>''' |  |   '''<u>Содержание урока</u>''' | 
| - |   <u></u>'''[[Image:1236084776 kr.jpg|10x10px]] конспект урока                       ''' | + |   <u></u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] конспект урока                       ''' | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] опорный каркас    | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] опорный каркас    | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] презентация урока | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] презентация урока | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] акселеративные методы   | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] акселеративные методы   | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] интерактивные технологии   | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] интерактивные технологии   | 
|  |     |  |     | 
|  |   '''<u>Практика</u>''' |  |   '''<u>Практика</u>''' | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] задачи и упражнения   | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] задачи и упражнения   | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] самопроверка | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] самопроверка | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] практикумы, тренинги, кейсы, квесты | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] практикумы, тренинги, кейсы, квесты | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] домашние задания | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] домашние задания | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] дискуссионные вопросы | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] дискуссионные вопросы | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] риторические вопросы от учеников | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] риторические вопросы от учеников | 
| - |   
 | + |   | 
|  |   '''<u>Иллюстрации</u>''' |  |   '''<u>Иллюстрации</u>''' | 
| - |   <u></u>'''[[Image:1236084776 kr.jpg|10x10px]] аудио-, видеоклипы и мультимедиа ''' | + |   <u></u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] аудио-, видеоклипы и мультимедиа ''' | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] фотографии, картинки   | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] фотографии, картинки   | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] графики, таблицы, схемы | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] графики, таблицы, схемы | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] юмор, анекдоты, приколы, комиксы | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] юмор, анекдоты, приколы, комиксы | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] притчи, поговорки, кроссворды, цитаты | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] притчи, поговорки, кроссворды, цитаты | 
|  |     |  |     | 
|  |   '''<u>Дополнения</u>''' |  |   '''<u>Дополнения</u>''' | 
| - |   <u></u>'''[[Image:1236084776 kr.jpg|10x10px]] рефераты''' | + |   <u></u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] рефераты''' | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] статьи   | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] статьи   | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] фишки для любознательных   | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] фишки для любознательных   | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] шпаргалки   | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] шпаргалки   | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] учебники основные и дополнительные | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] учебники основные и дополнительные | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] словарь терминов                            | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] словарь терминов                            | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] прочие   | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] прочие   | 
|  |   '''<u></u>''' |  |   '''<u></u>''' | 
|  |   <u>Совершенствование учебников и уроков |  |   <u>Совершенствование учебников и уроков | 
| - |   </u>'''[[Image:1236084776 kr.jpg|10x10px]] исправление ошибок в учебнике''' | + |   </u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] исправление ошибок в учебнике''' | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] обновление фрагмента в учебнике   | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] обновление фрагмента в учебнике   | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] элементы новаторства на уроке   | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] элементы новаторства на уроке   | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] замена устаревших знаний новыми   | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] замена устаревших знаний новыми   | 
| - |   
 | + |   | 
|  |   '''<u>Только для учителей</u>''' |  |   '''<u>Только для учителей</u>''' | 
| - |   <u></u>'''[[Image:1236084776 kr.jpg|10x10px]] идеальные уроки ''' | + |   <u></u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] идеальные уроки ''' | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] календарный план на год    | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] календарный план на год    | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] методические рекомендации    | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] методические рекомендации    | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] программы | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] программы | 
| - |   [[Image:1236084776 kr.jpg|10x10px]] обсуждения | + |   [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] обсуждения | 
|  |     |  |     | 
|  |     |  |     | 
Если полупрямые а и b одинаково направлены и полупрямые b и с одинаково направлены, то полупрямые а и с тоже одинаково направлены (рис. 203). 
переводит полупрямую а в полупрямую b, а параллельный перенос, задаваемый формулами 
переводит полупрямую b в полупрямую с. 
Две полупрямые называются противоположно направленными, если каждая из них одинаково направлена с полупрямой, дополнительной к другой (рис. 204). 
Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум.